Local orthogonal polynomial expansion for density estimation
Author
Abstract
Suggested Citation
DOI: 10.1080/10485252.2017.1371715
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
- Peter Hall & Terence Tao, 2002. "Relative efficiencies of kernel and local likelihood density estimators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 537-547, August.
- Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
- Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
- Malec, Peter & Schienle, Melanie, 2014.
"Nonparametric kernel density estimation near the boundary,"
Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
- Peter Malec & Melanie Schienle, 2012. "Nonparametric Kernel Density Estimation Near the Boundary," SFB 649 Discussion Papers SFB649DP2012-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Malec, Peter & Schienle, Melanie, 2012. "Nonparametric Kernel density estimation near the boundary," SFB 649 Discussion Papers 2012-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Kairat Mynbaev & Carlos Martins-Filho, 2019.
"Unified estimation of densities on bounded and unbounded domains,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.
- Mynbayev, Kairat & Martins-Filho, Carlos, 2017. "Unified estimation of densities on bounded and unbounded domains," MPRA Paper 87044, University Library of Munich, Germany, revised Jan 2018.
- Mohammadi, Faezeh & Izadi, Muhyiddin & Lai, Chin-Diew, 2016. "On testing whether burn-in is required under the long-run average cost," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 217-224.
- Kakizawa, Yoshihide, 2021. "A class of Birnbaum–Saunders type kernel density estimators for nonnegative data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Kokonendji, Célestin C. & Varron, Davit, 2016. "Performance of discrete associated kernel estimators through the total variation distance," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 225-235.
- Gery Geenens, 2021. "Mellin–Meijer kernel density estimation on $${{\mathbb {R}}}^+$$ R +," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 953-977, October.
- Jesús Fajardo & Pedro Harmath, 2021. "Boundary estimation with the fuzzy set density estimator," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 285-302, December.
- Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
- Touazi, A. & Benouaret, Z. & Aissani, D. & Adjabi, S., 2017. "Nonparametric estimation of the claim amount in the strong stability analysis of the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 78-83.
- Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
- Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015.
"Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
- Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
- Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020.
"Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid,"
Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
- Lux, Marius & Härdle, Wolfgang Karl & Lessmann, Stefan, 2018. "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid," IRTG 1792 Discussion Papers 2018-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
- Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
- Bennedsen, Mikkel & Hillebrand, Eric & Jensen, Sebastian, 2023. "A neural network approach to the environmental Kuznets curve," Energy Economics, Elsevier, vol. 126(C).
- Ma, Xiaobo & Karimpour, Abolfazl & Wu, Yao-Jan, 2020. "Statistical evaluation of data requirement for ramp metering performance assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 248-261.
- Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
- Mikkel Bennedsen & Eric Hillebrand & Sebastian Jensen, 2022. "A Neural Network Approach to the Environmental Kuznets Curve," CREATES Research Papers 2022-09, Department of Economics and Business Economics, Aarhus University.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:29:y:2017:i:4:p:806-830. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.