IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v200y2023ics0167715223000925.html
   My bibliography  Save this article

Choice of degree of Bernstein polynomial model

Author

Listed:
  • Wang, Tao
  • Guan, Zhong

Abstract

Methods based on moments and modes for choosing Bernstein polynomial model degree are proposed. Simulation showed that the mean integrated square errors of the maximum approximate Bernstein likelihood estimates of density using degrees selected by the proposed methods and the change-point method are smaller than that of the kernel density but either closer to or smaller than that of the parametric maximum likelihood estimator.

Suggested Citation

  • Wang, Tao & Guan, Zhong, 2023. "Choice of degree of Bernstein polynomial model," Statistics & Probability Letters, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:stapro:v:200:y:2023:i:c:s0167715223000925
    DOI: 10.1016/j.spl.2023.109868
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223000925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    2. M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
    3. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    4. Zhong Guan, 2016. "Efficient and robust density estimation using Bernstein type polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 250-271, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    2. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    4. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    5. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    6. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    7. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    8. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    9. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    10. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    11. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    12. D.P. Amali Dassanayake & Igor Volobouev & A. Alexandre Trindade, 2017. "Local orthogonal polynomial expansion for density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 806-830, October.
    13. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    14. Rodrigues, G.S. & Nott, David J. & Sisson, S.A., 2016. "Functional regression approximate Bayesian computation for Gaussian process density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 229-241.
    15. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    16. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    17. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    18. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    19. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    20. J. Baixauli & Susana Alvarez, 2012. "Implied Severity Density Estimation: An Extended Semiparametric Method to Compute Credit Value at Risk," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 115-129, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:200:y:2023:i:c:s0167715223000925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.