IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v28y2016i2p428-458.html
   My bibliography  Save this article

Nonparametric prediction of spatial multivariate data

Author

Listed:
  • Sophie Dabo-Niang
  • Camille Ternynck
  • Anne-Françoise Yao

Abstract

This paper investigates a nonparametric spatial predictor of a stationary multidimensional spatial process observed over a rectangular domain. The proposed predictor depends on two kernels in order to control both the distance between observations and that between spatial locations. The uniform almost complete consistency and the asymptotic normality of the kernel predictor are obtained when the sample considered is an alpha-mixing sequence. Numerical studies were carried out in order to illustrate the behaviour of our methodology both for simulated data and for an environmental data set.

Suggested Citation

  • Sophie Dabo-Niang & Camille Ternynck & Anne-Françoise Yao, 2016. "Nonparametric prediction of spatial multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 428-458, June.
  • Handle: RePEc:taf:gnstxx:v:28:y:2016:i:2:p:428-458
    DOI: 10.1080/10485252.2016.1164313
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2016.1164313
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2016.1164313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    2. Mohamed Machkouri, 2007. "Nonparametric Regression Estimation for Random Fields in a Fixed-Design," Statistical Inference for Stochastic Processes, Springer, vol. 10(1), pages 29-47, January.
    3. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
    4. Mohamed El Machkouri & Radu Stoica, 2010. "Asymptotic normality of kernel estimates in a regression model for random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(8), pages 955-971.
    5. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    6. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    7. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    8. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    9. Hongxia Wang & Jinde Wang & Bo Huang, 2012. "Prediction for spatio-temporal models with autoregression in errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 217-244.
    10. Bel, L. & Allard, D. & Laurent, J.M. & Cheddadi, R. & Bar-Hen, A., 2009. "CART algorithm for spatial data: Application to environmental and ecological data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3082-3093, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo García Arancibia & Pamela Llop & Mariel Lovatto, 2023. "Nonparametric prediction for univariate spatial data: Methods and applications," Papers in Regional Science, Wiley Blackwell, vol. 102(3), pages 635-672, June.
    2. S.‐H. Arnaud Kanga & Ouagnina Hili & Sophie Dabo‐Niang & Assi N'Guessan, 2023. "Asymptotic properties of nonparametric quantile estimation with spatial dependency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 254-283, August.
    3. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxia Wang & Jinde Wang, 2009. "Estimation of the trend function for spatio-temporal models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 567-588.
    2. Younso, Ahmad, 2017. "On the consistency of a new kernel rule for spatially dependent data," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 64-71.
    3. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    4. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    5. Mohammed Attouch & Ali Laksaci & Nafissa Messabihi, 2017. "Nonparametric relative error regression for spatial random variables," Statistical Papers, Springer, vol. 58(4), pages 987-1008, December.
    6. Ahmad Younso, 2023. "On the consistency of mode estimate for spatially dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 343-372, April.
    7. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.
    8. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    9. S.‐H. Arnaud Kanga & Ouagnina Hili & Sophie Dabo‐Niang & Assi N'Guessan, 2023. "Asymptotic properties of nonparametric quantile estimation with spatial dependency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 254-283, August.
    10. Bouabsa Wahiba, 2022. "Unform in Bandwith of the Conditional Distribution Function with Functional Explanatory Variable: The Case of Spatial Data with the K Nearest Neighbour Method," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(2), pages 30-46, June.
    11. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    12. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    13. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    14. Mustapha Rachdi & Ali Laksaci & Noriah M. Al-Kandari, 2022. "Expectile regression for spatial functional data analysis (sFDA)," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 627-655, July.
    15. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.
    16. Dabo-Niang, Sophie & Kaid, Zoulikha & Laksaci, Ali, 2012. "On spatial conditional mode estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1413-1421.
    17. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
    18. Peligrad, Magda & Sang, Hailin & Xiao, Yimin & Yang, Guangyu, 2022. "Limit theorems for linear random fields with innovations in the domain of attraction of a stable law," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 596-621.
    19. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.
    20. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:28:y:2016:i:2:p:428-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.