IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v10y2007i1p29-47.html
   My bibliography  Save this article

Nonparametric Regression Estimation for Random Fields in a Fixed-Design

Author

Listed:
  • Mohamed Machkouri

Abstract

No abstract is available for this item.

Suggested Citation

  • Mohamed Machkouri, 2007. "Nonparametric Regression Estimation for Random Fields in a Fixed-Design," Statistical Inference for Stochastic Processes, Springer, vol. 10(1), pages 29-47, January.
  • Handle: RePEc:spr:sistpr:v:10:y:2007:i:1:p:29-47
    DOI: 10.1007/s11203-005-7332-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-005-7332-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-005-7332-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxia Wang & Jinde Wang, 2009. "Estimation of the trend function for spatio-temporal models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 567-588.
    2. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.
    3. Giraudo, Davide, 2024. "Deviation inequality for Banach-valued orthomartingales," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    4. V. Yu. Bogdanskii & O. I. Klesov & I. Molchanov, 2021. "Uniform Strong Law of Large Numbers," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 461-470, June.
    5. Francisco José Navarro-González & Yolanda Villacampa & Mónica Cortés-Molina & Salvador Ivorra, 2020. "Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support," Mathematics, MDPI, vol. 8(9), pages 1-27, September.
    6. Sophie Dabo-Niang & Camille Ternynck & Anne-Françoise Yao, 2016. "Nonparametric prediction of spatial multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 428-458, June.
    7. Peligrad, Magda & Sang, Hailin & Xiao, Yimin & Yang, Guangyu, 2022. "Limit theorems for linear random fields with innovations in the domain of attraction of a stable law," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 596-621.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:10:y:2007:i:1:p:29-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.