Adaptive efficient analysis for big data ergodic diffusion models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11203-021-09241-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jean Jacod, 2000. "Non‐parametric Kernel Estimation of the Coefficient of a Diffusion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 83-96, March.
- L. Galtchouk & S. Pergamenshchikov, 2006. "Asymptotically Efficient Sequential Kernel Estimates of the Drift Coefficient in Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 1-16, May.
- Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
- L. Galtchouk & S. Pergamenshchikov, 2011. "Adaptive sequential estimation for ergodic diffusion processes in quadratic metric," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 255-285.
- Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
- De Gregorio, Alessandro & Iacus, Stefano M., 2012. "Adaptive Lasso-Type Estimation For Multivariate Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 28(4), pages 838-860, August.
- Hoffmann, Marc, 1999. "Adaptive estimation in diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 135-163, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
- Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
- Ignatieva, Katja & Platen, Eckhard, 2012. "Estimating the diffusion coefficient function for a diversified world stock index," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1333-1349.
- Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
- Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
- J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
- Hoffmann, Marc & Marguet, Aline, 2019. "Statistical estimation in a randomly structured branching population," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5236-5277.
- De Gregorio, A. & Iacus, S.M., 2013.
"On a family of test statistics for discretely observed diffusion processes,"
Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
- Alessandro De Gregorio & Stefano Iacus, 2011. "On a family of test statistics for discretely observed diffusion processes," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1114, Universitá degli Studi di Milano.
- Wooyong Lee & Priscilla E. Greenwood & Nancy Heckman & Wolfgang Wefelmeyer, 2017. "Pre-averaged kernel estimators for the drift function of a diffusion process in the presence of microstructure noise," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 237-252, July.
- Charlotte Dion, 2016. "Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 919-951, November.
- Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.
- Schmisser Emeline, 2011. "Non-parametric drift estimation for diffusions from noisy data," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 119-150, May.
- Alessandro DE GREGORIO & Stefano Maria IACUS, 2011. "On a family of test statistics for discretely observed diffusion processes," Departmental Working Papers 2011-37, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
- Fabian Dunker & Thorsten Hohage, 2014. "On parameter identification in stochastic differential equations by penalized maximum likelihood," Papers 1404.0651, arXiv.org.
- Nicolas Marie, 2023. "Nonparametric estimation for i.i.d. paths of a martingale-driven model with application to non-autonomous financial models," Finance and Stochastics, Springer, vol. 27(1), pages 97-126, January.
- León, José & Ludeña, Carenne, 2007. "Limits for weighted p-variations and likewise functionals of fractional diffusions with drift," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 271-296, March.
- Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
- Serguei Pergamenchtchikov & Alexander G. Tartakovsky, 2018. "Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 217-259, April.
- Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
More about this item
Keywords
Adaptive nonparametric drift estimation; Asymptotic efficiency; Discrete time data; Nonasymptotic estimation; Model selection; Quadratic risk; Sharp oracle inequality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:25:y:2022:i:1:d:10.1007_s11203-021-09241-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.