IDEAS home Printed from https://ideas.repec.org/a/spr/specre/v1y1999i2p161-173.html
   My bibliography  Save this article

Outline of forecast theory using generalized cost functions

Author

Listed:
  • Clive W.J. Granger

    (Department of Economics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0508, USA)

Abstract

The cost functions used to form forecasts in practice may be quite different than the squared costs that is often assumed in forecast theory. The impact on evaluation procedures is determined and simple properties for the derivate of the cost function of the errors are found to provide simple tests of optimality. For a very limited class of situations are forecasts based on conditional means optimal, generally, the econometricians needs to provide the whole conditional predicted distribution. Implications for multi-step forecasts and the combination of forecasts are briefly considered.

Suggested Citation

  • Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
  • Handle: RePEc:spr:specre:v:1:y:1999:i:2:p:161-173
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/10108/papers/9001002/90010161.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Optimum forecasts; cost functions; predictive distribution;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:specre:v:1:y:1999:i:2:p:161-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.