IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i6p180-d835486.html
   My bibliography  Save this article

High-Frequency Direction Forecasting of the Futures Market Using a Machine-Learning-Based Method

Author

Listed:
  • Shangkun Deng

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Yingke Zhu

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Xiaoru Huang

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Shuangyang Duan

    (College of Economics and Management, China Three Gorges University, Yichang 443002, China)

  • Zhe Fu

    (School of History, Beijing Normal University, Beijing 100875, China)

Abstract

Futures price-movement-direction forecasting has always been a significant and challenging subject in the financial market. In this paper, we propose a combination approach that integrates the XGBoost (eXtreme Gradient Boosting), SMOTE (Synthetic Minority Oversampling Technique), and NSGA-II (Non-dominated Sorting Genetic Algorithm-II) methods. We applied the proposed approach on the direction prediction and simulation trading of rebar futures, which are traded on the Shanghai Futures Exchange. Firstly, the minority classes of the high-frequency rebar futures price change magnitudes are oversampled using the SMOTE algorithm to overcome the imbalance problem of the class data. Then, XGBoost is adopted to construct a multiclassification model for the price-movement-direction prediction. Next, the proposed approach employs NSGA-II to optimize the parameters of the pre-designed trading rule for trading simulation. Finally, the price-movement direction is predicted, and we conducted the high-frequency trading based on the optimized XGBoost model and the trading rule, with the classification and trading performances empirically evaluated by four metrics over four testing periods. Meanwhile, the LIME (Local Interpretable Model-agnostic Explanations) is applied as a model explanation approach to quantify the prediction contributions of features to the forecasting samples. From the experimental results, we found that the proposed approach performed best in terms of direction prediction accuracy, profitability, and return–risk ratio. The proposed approach could be beneficial for decision-making of the rebar traders and related companies engaged in rebar futures trading.

Suggested Citation

  • Shangkun Deng & Yingke Zhu & Xiaoru Huang & Shuangyang Duan & Zhe Fu, 2022. "High-Frequency Direction Forecasting of the Futures Market Using a Machine-Learning-Based Method," Future Internet, MDPI, vol. 14(6), pages 1-21, June.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:6:p:180-:d:835486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/6/180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/6/180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    2. Lessmann, Stefan & Voß, Stefan, 2017. "Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy," International Journal of Forecasting, Elsevier, vol. 33(4), pages 864-877.
    3. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    4. Batchelor, Roy & Alizadeh, Amir & Visvikis, Ilias, 2007. "Forecasting spot and forward prices in the international freight market," International Journal of Forecasting, Elsevier, vol. 23(1), pages 101-114.
    5. Shangkun Deng & Chenguang Wang & Zhe Fu & Mingyue Wang, 2021. "An Intelligent System for Insider Trading Identification in Chinese Security Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 593-616, February.
    6. Yen-Yi Feng & I-Chin Wu & Tzu-Li Chen, 2017. "Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm," Health Care Management Science, Springer, vol. 20(1), pages 55-75, March.
    7. G. Caginalp & H. Laurent, 1998. "The predictive power of price patterns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(3-4), pages 181-205.
    8. Shih-Feng Huang & Meihui Guo & May-Ru Chen, 2020. "Stock market trend prediction using a functional time series approach," Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 69-79, January.
    9. Xiaojun Li & Pan Tang, 2020. "Stock index prediction based on wavelet transform and FCD‐MLGRU," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1229-1237, December.
    10. Kyoungsu Kim & Seok Lim, 2019. "Price discovery and volatility spillover in spot and futures markets: evidences from steel-related commodities in China," Applied Economics Letters, Taylor & Francis Journals, vol. 26(5), pages 351-357, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Shangkun & Huang, Xiaoru & Zhu, Yingke & Su, Zhihao & Fu, Zhe & Shimada, Tatsuro, 2023. "Stock index direction forecasting using an explainable eXtreme Gradient Boosting and investor sentiments," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    2. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    3. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Marius Lux & Wolfgang Karl Hardle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Papers 2009.06910, arXiv.org.
    6. Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
    7. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    8. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    9. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    10. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    11. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    12. Ruoyan Sun & David Mendez, 2019. "Finding the optimal mix of smoking initiation and cessation interventions to reduce smoking prevalence," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-12, March.
    13. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    14. Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
    15. Ruiwen Yang & Pathairat Pastpipatkul & Chaiwat Nimanussornkul, 2020. "Dynamic Volatility Spillover Among Chinese Black Series Futures Under Structural Breaks," International Journal of Business and Administrative Studies, Professor Dr. Bahaudin G. Mujtaba, vol. 6(5), pages 236-246.
    16. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    17. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    18. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    19. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    20. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:6:p:180-:d:835486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.