IDEAS home Printed from https://ideas.repec.org/a/ssi/jouesi/v7y2019i1p574-594.html
   My bibliography  Save this article

LNG Maritime energy contracting model

Author

Listed:
  • Eunice Omolola Olaniyi

    (Tallinn University of Technology, Estonia)

  • Laima Gerlitz

    (Hochschule Wismar, University of Applied Sciences, Technology, Business and Design, Germany)

Abstract

To meet the global 2020 low sulphur demand and beyond, the supply of low sulphur fuel must increase and expand. So far, the world bunker market is split between the different compliance solutions increasing demand for sulphur compliant fuel. The work examines the implementation of an innovative business model initially designed to meet energy needs. The developed model facilitated a sustainable LNG supply/distribution process economically and was further tested with a real-life case example that shows the cost structure for the proposed model. Both quantitative and qualitative data approaches were used to collect data. The illustrated modified features of the LNG maritime energy contract model accentuate an analytical and unconventional strategy embedded in experimentation.

Suggested Citation

  • Eunice Omolola Olaniyi & Laima Gerlitz, 2019. "LNG Maritime energy contracting model," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(1), pages 574-594, September.
  • Handle: RePEc:ssi:jouesi:v:7:y:2019:i:1:p:574-594
    DOI: 10.9770/jesi.2019.7.1(40)
    as

    Download full text from publisher

    File URL: https://jssidoi.org/jesi/uploads/articles/25/Olaniyi_LNG_Maritime_energy_contracting_model.pdf
    Download Restriction: no

    File URL: https://jssidoi.org/jesi/article/388
    Download Restriction: no

    File URL: https://libkey.io/10.9770/jesi.2019.7.1(40)?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
    2. Gu, Yewen & Wallace, Stein W., 2017. "Scrubber: a potentially overestimated compliance method for the Emission Control Areas - The importance of involving a ship's sailing pattern in the evaluation," Discussion Papers 2017/13, Norwegian School of Economics, Department of Business and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetiana Kurbatova & Iryna Sotnyk & Galyna Trypolska & Laima Gerlitz & Tetiana Skibina & Olha Prokopenko & Oleksandra Kubatko, 2023. "Ukraine`'s Bioenergy Sector: Trends and Perspectives for the Post-war Green Energy Transition," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 515-532, September.
    2. Gunnar Prause & Eunice O. Olaniyi, 2020. "Building a sustainable and transferable sulphur emission free BSR [Die Errichtung eines nachhaltigen und übertragbaren Ostseeraumes ohne Schwefelemissionen]," Sustainability Nexus Forum, Springer, vol. 28(1), pages 21-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    2. Gunnar Prause & Eunice O. Olaniyi, 2020. "Building a sustainable and transferable sulphur emission free BSR [Die Errichtung eines nachhaltigen und übertragbaren Ostseeraumes ohne Schwefelemissionen]," Sustainability Nexus Forum, Springer, vol. 28(1), pages 21-27, June.
    3. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    4. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    5. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    6. Kian-Guan Lim & Michelle Lim, 2020. "Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    7. Chi, Hongtao & Pedrielli, Giulia & Ng, Szu Hui & Kister, Thomas & Bressan, Stéphane, 2018. "A framework for real-time monitoring of energy efficiency of marine vessels," Energy, Elsevier, vol. 145(C), pages 246-260.
    8. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Minghan Sun & Yiwei Jia & Jian Wei & Jewel X. Zhu, 2023. "Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns," Energies, MDPI, vol. 16(6), pages 1-18, March.
    10. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    11. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    12. Theodoros C. Zannis & John S. Katsanis & Georgios P. Christopoulos & Elias A. Yfantis & Roussos G. Papagiannakis & Efthimios G. Pariotis & Dimitrios C. Rakopoulos & Constantine D. Rakopoulos & Athanas, 2022. "Marine Exhaust Gas Treatment Systems for Compliance with the IMO 2020 Global Sulfur Cap and Tier III NO x Limits: A Review," Energies, MDPI, vol. 15(10), pages 1-49, May.
    13. Katarzyna Prill & Cezary Behrendt & Marcin Szczepanek & Iwona Michalska-Pożoga, 2020. "A New Method of Determining Energy Efficiency Operational Indicator for Specialized Ships," Energies, MDPI, vol. 13(5), pages 1-17, March.
    14. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    15. Kirsi Spoof-Tuomi & Seppo Niemi, 2020. "Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping," Clean Technol., MDPI, vol. 2(1), pages 1-19, January.
    16. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    17. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    18. Anna Lunde Hermansson & Ida-Maja Hassellöv & Tiia Grönholm & Jukka-Pekka Jalkanen & Erik Fridell & Rasmus Parsmo & Jesper Hassellöv & Erik Ytreberg, 2024. "Strong economic incentives of ship scrubbers promoting pollution," Nature Sustainability, Nature, vol. 7(6), pages 812-822, June.
    19. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    20. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.

    More about this item

    Keywords

    SECA regulations; Baltic Sea region; clean shipping; sustainability; LNG; global suphur cap;
    All these keywords.

    JEL classification:

    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • L26 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Entrepreneurship
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • M10 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssi:jouesi:v:7:y:2019:i:1:p:574-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuela Tvaronaviciene (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.