IDEAS home Printed from https://ideas.repec.org/a/ssi/jouesi/v10y2022i2p394-407.html
   My bibliography  Save this article

Alternative costs of equity of coal mining companies taking into account a context of the Russian Invasion into Ukraine

Author

Listed:
  • Tereza Matasová

    (Institute of Technology and Business in České Budějovice, Czech Republic)

  • Marek Vochozka

    (Institute of Technology and Business in České Budějovice, Czech Republic)

  • Zuzana Rowland

    (Institute of Technology and Business in České Budějovice, Czech Republic)

Abstract

The aim of work was to evaluate the alternative costs of equity of mining companies in the Czech Republic from 2011 to 2021 and to predict the development of costs structure of equity in the following five years. The calculation of Capital Asset Pricing Model (CAMP) model was selected to deal with the issue of alternative costs of equity in the monitored period and multi-layer perceptron networks were selected for the prediction of development. The achieved results clearly demonstrate the ratio of capital structure and its prediction in the future. The research is useful for energy enterprises and a possibility to use it in another sector is obvious.

Suggested Citation

  • Tereza Matasová & Marek Vochozka & Zuzana Rowland, 2022. "Alternative costs of equity of coal mining companies taking into account a context of the Russian Invasion into Ukraine," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 10(2), pages 394-407, December.
  • Handle: RePEc:ssi:jouesi:v:10:y:2022:i:2:p:394-407
    DOI: 10.9770/jesi.2022.10.2(24)
    as

    Download full text from publisher

    File URL: https://jssidoi.org/jesi/uploads/articles/38/Matasova_Alternative_costs_of_equity_of_coal_mining_companies_taking_into_account_a_context_of_the_Russian_Invasion_into_Ukraine.pdf
    Download Restriction: no

    File URL: https://jssidoi.org/jesi/article/1032
    Download Restriction: no

    File URL: https://libkey.io/10.9770/jesi.2022.10.2(24)?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Alisa Magdich & János Szenderák & Mónika Harangi-Rákos, 2021. "Economic Diversification In Resource-Based Economies: Norway Experience," Pressburg Economic Review, Pressburg Economic Centre, London, UK, vol. 1(1), pages 27-36, December.
    3. Joseph Baines & Sandy Brian Hager, 2020. "Financial Crisis, Inequality, and Capitalist Diversity: A Critique of the Capital as Power Model of the Stock Market," New Political Economy, Taylor & Francis Journals, vol. 25(1), pages 122-139, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    2. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    3. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    4. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    5. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    6. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    8. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    9. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    10. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    11. Guillaume Guerard & Hugo Pousseur & Ihab Taleb, 2021. "Isolated Areas Consumption Short-Term Forecasting Method," Energies, MDPI, vol. 14(23), pages 1-23, November.
    12. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    13. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    14. Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
    15. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    16. Mario Tovar & Miguel Robles & Felipe Rashid, 2020. "PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of Study: Temixco-Morelos, México," Energies, MDPI, vol. 13(24), pages 1-15, December.
    17. Bichler, Shimshon & Nitzan, Jonathan, 2020. "Growing through Sabotage: Energizing Hierarchical Power," Review of Capital as Power, Capital As Power - Toward a New Cosmology of Capitalism, vol. 1(5), pages 1-78.
    18. Rob Shipman & Rebecca Roberts & Julie Waldron & Chris Rimmer & Lucelia Rodrigues & Mark Gillott, 2021. "Online Machine Learning of Available Capacity for Vehicle-to-Grid Services during the Coronavirus Pandemic," Energies, MDPI, vol. 14(21), pages 1-16, November.
    19. Niu, Zhibin & Wu, Junqi & Liu, Xiufeng & Huang, Lizhen & Nielsen, Per Sieverts, 2021. "Understanding energy demand behaviors through spatio-temporal smart meter data analysis," Energy, Elsevier, vol. 226(C).
    20. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.

    More about this item

    Keywords

    alternative costs; debt capital; CAMP; neural networks;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L72 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Other Nonrenewable Resources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssi:jouesi:v:10:y:2022:i:2:p:394-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuela Tvaronaviciene (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.