IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i14d10.1007_s11269-024-03914-9.html
   My bibliography  Save this article

An Improved Coupled Hydrologic-Hydrodynamic Model for Urban Flood Simulations Under Varied Scenarios

Author

Listed:
  • Siwei Cheng

    (Tibet Agriculture and Animal Husbandry University
    Hydraulic and Power Engineering of Tibet
    China Institute of Water Resources and Hydropower Research)

  • Mingxiang Yang

    (China Institute of Water Resources and Hydropower Research
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin)

  • Chenglin Li

    (Tibet Agriculture and Animal Husbandry University
    Hydraulic and Power Engineering of Tibet)

  • Houlei Xu

    (PowerChina Kunming Engineering Corporation Limited)

  • Changli Chen

    (PowerChina Kunming Engineering Corporation Limited)

  • Dewei Shu

    (PowerChina Kunming Engineering Corporation Limited)

  • Yunzhong Jiang

    (China Institute of Water Resources and Hydropower Research
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin)

  • Yunpeng Gui

    (China Institute of Water Resources and Hydropower Research
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin)

  • Ningpeng Dong

    (China Institute of Water Resources and Hydropower Research
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin)

Abstract

Cities place a high priority on addressing urban flooding issues and have worked on flood prevention planning and construction efforts. This study aims to develop the improved coupling hydrologic-hydrodynamic model based on SWMM and TELEMAC-2D model by considering river runoff factors. Taking Tongzhou district of Beijing as an example, two different coupled models of the drainage network are constructed for comparison. The research focused on the drainage capacity of the study area and surface ponding water under different rainfall recurrence periods to evaluate the current flood resilience status and the priority of drainage network improvements. The results indicate that the demonstration area effectively mitigates urban flooding and can handle a 100-year return period rainfall event, with a maximum inundation depth of 0.407 m and an overflow node ratio of 20.8%. As the rainfall recurrence period increases, the number of overflow nodes tends to stabilize. Due to the high susceptibility of traffic hubs in cities to flooding, the result of contrast model analysis suggests prioritizing the drainage networks under main roads and overpasses and implementing Low Impact Development (LID) facilities around rivers to enhance urban infiltration and reduce river overflow risks. This coupled model demonstrates good applicability and high simulation accuracy for complex urban flood scenarios, emphasizing the importance of targeted urban planning and infrastructure improvements in enhancing flood resilience.

Suggested Citation

  • Siwei Cheng & Mingxiang Yang & Chenglin Li & Houlei Xu & Changli Chen & Dewei Shu & Yunzhong Jiang & Yunpeng Gui & Ningpeng Dong, 2024. "An Improved Coupled Hydrologic-Hydrodynamic Model for Urban Flood Simulations Under Varied Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5523-5539, November.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:14:d:10.1007_s11269-024-03914-9
    DOI: 10.1007/s11269-024-03914-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03914-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03914-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuang Yao & Nengcheng Chen & Wenying Du & Chao Wang & Cuizhen Chen, 2021. "A Cellular Automata Based Rainfall-Runoff Model for Urban Inundation Analysis Under Different Land Uses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1991-2006, April.
    2. Majid Hashemi & Najmeh Mahjouri, 2022. "Global Sensitivity Analysis-based Design of Low Impact Development Practices for Urban Runoff Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2953-2972, July.
    3. Jiake Li & Chenning Deng & Ya Li & Yajiao Li & Jinxi Song, 2017. "Comprehensive Benefit Evaluation System for Low-Impact Development of Urban Stormwater Management Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4745-4758, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.
    2. Zongmin Li & Shuyan Xu & Liming Yao, 2018. "A Systematic Literature Mining of Sponge City: Trends, Foci and Challenges Standing Ahead," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    3. Jen-Yang Lin & Ti-Chi Yuan & Chi-Feng Chen, 2021. "Water Retention Performance at Low-Impact Development (LID) Field Sites in Taipei, Taiwan," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    4. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "Low Impact Development Measures Spatial Arrangement for Urban Flood Mitigation: An Exploratory Optimal Framework based on Source Tracking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3755-3770, September.
    5. Mariana Marchioni & Roberto Fedele & Anita Raimondi & John Sansalone & Gianfranco Becciu, 2022. "Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1879-1895, April.
    6. Bartosz Szeląg & Roman Suligowski & Grzegorz Majewski & Przemysław Kowal & Adrian Bralewski & Karolina Bralewska & Ewa Anioł & Wioletta Rogula-Kozłowska & Francesco Paola, 2022. "Application of Multinomial Logistic Regression to Model the Impact of Rainfall Genesis on the Performance of Storm Overflows: Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3699-3714, August.
    7. A. Raimondi & G. Becciu, 2021. "Performance of Green Roofs for Rainwater Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 99-111, January.
    8. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.
    9. José M. Rodríguez-Flores & Jorge A. Valero Fandiño & Spencer A. Cole & Keyvan Malek & Tina Karimi & Harrison B. Zeff & Patrick M. Reed & Alvar Escriva-Bou & Josué Medellín-Azuara, 2022. "Global Sensitivity Analysis of a Coupled Hydro-Economic Model and Groundwater Restriction Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6115-6130, December.
    10. Aurora Gullotta & Tagele Mossie Aschale & David J. Peres & Guido Sciuto & Antonino Cancelliere, 2023. "Modelling Stormwater Runoff Changes Induced by Ground-Mounted Photovoltaic Solar Parks: A Conceptualization in EPA-SWMM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4507-4520, September.
    11. Hongfa Wang & Xinjian Guan & Yu Meng & Zening Wu & Kun Wang & Huiliang Wang, 2023. "Coupling Time and Non-Time Series Models to Simulate the Flood Depth at Urban Flooded Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1275-1295, February.
    12. Zhangjun Liu & Jingwen Zhang & Tianfu Wen & Jingqing Cheng, 2022. "Uncertainty Quantification of Rainfall-runoff Simulations Using the Copula-based Bayesian Processor: Impacts of Seasonality, Copula Selection and Correlation Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4981-4993, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:14:d:10.1007_s11269-024-03914-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.