IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p759-d480337.html
   My bibliography  Save this article

Water Retention Performance at Low-Impact Development (LID) Field Sites in Taipei, Taiwan

Author

Listed:
  • Jen-Yang Lin

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Ti-Chi Yuan

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Chi-Feng Chen

    (Department of Land Resources, Chinese Culture University, Taipei 11114, Taiwan)

Abstract

Low-impact development (LID) aims to retain stormwater at source sites rather than achieve water drainage. The infiltration and storage of rainwater on site is the most commonly applied LID design concept, turning impervious pavements into pervious pavements. In this study, three field sites in Taipei city, Taiwan, were monitored. Two of the sites were located on campuses, and one site was a roadside location. They were constructed at different times and had distinct purposes, but the common design aspect was the infiltration function of the ground surface. We monitored the water retention performance at the above three sites and applied a verified stormwater management model (SWMM) to characterize the performance at these case sites. The observed data show that if the accumulative rainfall was lower than 20 mm, the water retention rate at each of the three case sites reached almost 50%; at 60 mm rainfall, the rate was 40%. With increased rainfall amount, the water retention rate decreased because the storage capacity was limited. Because water retention is typically controlled by the infiltration capacity, the rainfall intensity dominated the performance. At the three field sites, the water retention rate was 40% on average at a rainfall intensity below 20 mm/h. Above this rainfall intensity, the infiltration performance of the pervious pavement decreased. The verified model was applied to assess the performance at the three sites under the Taipei city drainage system design standard, i.e., the five-year recurrent period storm level, at 78.8 mm/h. The results demonstrate that the water retention rates were 9.1%, 14.2%, and 61.0% at the three sites, indicating that the pervious pavement could reduce the loading of the current stormwater drainage system. Dispersed sites should be considered in urban stormwater management to mitigate flooding risk in urban areas.

Suggested Citation

  • Jen-Yang Lin & Ti-Chi Yuan & Chi-Feng Chen, 2021. "Water Retention Performance at Low-Impact Development (LID) Field Sites in Taipei, Taiwan," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:759-:d:480337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiake Li & Chenning Deng & Ya Li & Yajiao Li & Jinxi Song, 2017. "Comprehensive Benefit Evaluation System for Low-Impact Development of Urban Stormwater Management Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4745-4758, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-Feng Chen & Jhe-Wei Lin & Jen-Yang Lin, 2022. "Hydrological Cycle Performance at a Permeable Pavement Site and a Raingarden Site in a Subtropical Region," Land, MDPI, vol. 11(6), pages 1-16, June.
    2. Heenyun Kim & Gunwoo Kim, 2021. "An Effectiveness Study on the Use of Different Types of LID for Water Cycle Recovery in a Small Catchment," Land, MDPI, vol. 10(10), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siwei Cheng & Mingxiang Yang & Chenglin Li & Houlei Xu & Changli Chen & Dewei Shu & Yunzhong Jiang & Yunpeng Gui & Ningpeng Dong, 2024. "An Improved Coupled Hydrologic-Hydrodynamic Model for Urban Flood Simulations Under Varied Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5523-5539, November.
    2. Zongmin Li & Shuyan Xu & Liming Yao, 2018. "A Systematic Literature Mining of Sponge City: Trends, Foci and Challenges Standing Ahead," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    3. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "Low Impact Development Measures Spatial Arrangement for Urban Flood Mitigation: An Exploratory Optimal Framework based on Source Tracking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3755-3770, September.
    4. Mariana Marchioni & Roberto Fedele & Anita Raimondi & John Sansalone & Gianfranco Becciu, 2022. "Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1879-1895, April.
    5. A. Raimondi & G. Becciu, 2021. "Performance of Green Roofs for Rainwater Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 99-111, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:759-:d:480337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.