IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i1d10.1007_s11269-022-03354-3.html
   My bibliography  Save this article

Leveraging Unsupervised Learning to Develop a Typology of Residential Water Users’ Attitudes Towards Conservation

Author

Listed:
  • Renee Obringer

    (Pennsylvania State University
    University of Maryland)

  • Dave D. White

    (Arizona State University)

Abstract

Providing adequate water supply to the growing number of urban residents will be a challenge faced by many utility managers throughout the remainder of this century. Though traditionally water managers have looked towards supply-based solutions (e.g., expanding reservoirs), recent trends indicate a shift towards demand-side management (e.g., encouraging conservation behaviors). A major part of successfully implementing demand management strategies is understanding the community-specific attitudes and beliefs that may influence uptake of conservation behaviors. Here, we present results from a study aimed at understanding these community-specific attitudes and beliefs towards water conservation. In particular, we leverage survey data from three cities in the Southwestern United States and a state-of-the-art clustering algorithm to determine seven key archetypes of water consumers. These archetypes can be used to determine demand management strategies that might have greater (or lesser) success. This study provides transferable archetypes of consumer attitudes towards water conservation, as well as a novel interdisciplinary methodology that combines social survey data with unsupervised machine learning.

Suggested Citation

  • Renee Obringer & Dave D. White, 2023. "Leveraging Unsupervised Learning to Develop a Typology of Residential Water Users’ Attitudes Towards Conservation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 37-53, January.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:1:d:10.1007_s11269-022-03354-3
    DOI: 10.1007/s11269-022-03354-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03354-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03354-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    2. Andreas Wunsch & Tanja Liesch & Stefan Broda, 2022. "Feature-based Groundwater Hydrograph Clustering Using Unsupervised Self-Organizing Map-Ensembles," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 39-54, January.
    3. Fahimi Farzad & Ahmed H. El-Shafie, 2017. "Performance Enhancement of Rainfall Pattern – Water Level Prediction Model Utilizing Self-Organizing-Map Clustering Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 945-959, February.
    4. Roberta Padulano & Giuseppe Giudice, 2018. "A Mixed Strategy Based on Self-Organizing Map for Water Demand Pattern Profiling of Large-Size Smart Water Grid Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3671-3685, September.
    5. Hui Wang & Dave Bracciano & Tirusew Asefa, 2020. "Evaluation of Water Saving Potential for Short-Term Water Demand Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3317-3330, August.
    6. Obringer, Renee & Mukherjee, Sayanti & Nateghi, Roshanak, 2020. "Evaluating the climate sensitivity of coupled electricity-natural gas demand using a multivariate framework," Applied Energy, Elsevier, vol. 262(C).
    7. Karolina Taczanowska & Luis-Millán González & Xavier García-Massó & Antoni Zięba & Christiane Brandenburg & Andreas Muhar & Maite Pellicer-Chenoll & José-Luis Toca-Herrera, 2019. "Nature-based Tourism or Mass Tourism in Nature? Segmentation of Mountain Protected Area Visitors Using Self-Organizing Maps (SOM)," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    8. Amir AghaKouchak & David Feldman & Martin Hoerling & Travis Huxman & Jay Lund, 2015. "Water and climate: Recognize anthropogenic drought," Nature, Nature, vol. 524(7566), pages 409-411, August.
    9. Saeed Ghavidelfar & Asaad Y. Shamseldin & Bruce W. Melville, 2017. "A Multi-Scale Analysis of Single-Unit Housing Water Demand Through Integration of Water Consumption, Land Use and Demographic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2173-2186, May.
    10. Aiyshwariya Paulvannan Kanmani & Renee Obringer & Benjamin Rachunok & Roshanak Nateghi, 2020. "Assessing Global Environmental Sustainability Via an Unsupervised Clustering Framework," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    11. A. Park Williams & Benjamin I. Cook & Jason E. Smerdon, 2022. "Rapid intensification of the emerging southwestern North American megadrought in 2020–2021," Nature Climate Change, Nature, vol. 12(3), pages 232-234, March.
    12. Edward W Maibach & Anthony Leiserowitz & Connie Roser-Renouf & C K Mertz, 2011. "Identifying Like-Minded Audiences for Global Warming Public Engagement Campaigns: An Audience Segmentation Analysis and Tool Development," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberta Padulano & Giuseppe Giudice, 2019. "Pattern Detection and Scaling Laws of Daily Water Demand by SOM: an Application to the WDN of Naples, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 739-755, January.
    2. Wu, Bingfang & Ma, Zonghan & Boken, Vijendra K. & Zeng, Hongwei & Shang, Jiali & Igor, Savin & Wang, Jinxia & Yan, Nana, 2022. "Regional differences in the performance of drought mitigation measures in 12 major wheat-growing regions of the world," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    4. Morrison, Mark & Duncan, Roderick & Parton, Kevin A., 2013. "Targeting segments in the Australian community to increase support for climate change policy," Australasian marketing journal, Elsevier, vol. 21(4), pages 212-217.
    5. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    6. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    7. Luong, Tuan Anh & Nguyen, Manh-Hung & Truong, N.T. Khuong & Le, Kien, 2023. "Rainfall variability and internal migration: The importance of agriculture linkage and gender inequality," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 326-336.
    8. Patrick D. Nunn & Kate Mulgrew & Bridie Scott-Parker & Donald W. Hine & Anthony D. G. Marks & Doug Mahar & Jack Maebuta, 2016. "Spirituality and attitudes towards Nature in the Pacific Islands: insights for enabling climate-change adaptation," Climatic Change, Springer, vol. 136(3), pages 477-493, June.
    9. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    10. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    11. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Shahzada Adnan & Kalim Ullah, 2020. "Development of drought hazard index for vulnerability assessment in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2989-3010, September.
    13. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    14. Kim, Junghwa & Schmöcker, Jan-Dirk & Fujii, Satoshi & Noland, Robert B., 2013. "Attitudes towards road pricing and environmental taxation among US and UK students," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 50-62.
    15. Araneda-Cabrera, Ronnie J. & Bermúdez, María & Puertas, Jerónimo, 2021. "Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    17. Oreste Fecarotta & Armando Carravetta & Maria Cristina Morani & Roberta Padulano, 2018. "Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions," Resources, MDPI, vol. 7(4), pages 1-20, November.
    18. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    19. Wang, Yuhan & Lewis, David J., 2024. "Wildfires and climate change have lowered the economic value of western U.S. forests by altering risk expectations," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    20. Newton Muhury & Armando A. Apan & Tek N. Marasani & Gebiaw T. Ayele, 2022. "Modelling Floodplain Vegetation Response to Groundwater Variability Using the ArcSWAT Hydrological Model, MODIS NDVI Data, and Machine Learning," Land, MDPI, vol. 11(12), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:1:d:10.1007_s11269-022-03354-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.