IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i14d10.1007_s11269-022-03329-4.html
   My bibliography  Save this article

A Comparison of Model-Based Methods for Leakage Localization in Water Distribution Systems

Author

Listed:
  • Irene Marzola

    (University of Ferrara)

  • Stefano Alvisi

    (University of Ferrara)

  • Marco Franchini

    (University of Ferrara)

Abstract

Model-based methods for leakage localization in water distribution systems have recently been gaining more attention. These methods identify the leakage position by comparing the measured network data with the corresponding values simulated by a hydraulic model. In this study two model-based methods already proposed in literature, one based on the Sensitivity Matrix method and the other one on the Linear Approximation method, are analysed and compared to each other. The methods are applied to the same case study network, exploiting only data provided by pressure sensors. Various analyses are undertaken in order to investigate the main critical issues tied to the two methods, i.e. a) the use of different amounts of data averaged over different time windows, b) the impact of the model’s accuracy in terms of water demands and pipe roughness, and c) the effect of the number of pressure measuring points. The results show that higher efficiency is obtained by considering the hourly averaged data all together. Moreover, the Linear Approximation method is on average 3 times more accurate than the Sensitivity Matrix when a perfect hydraulic model is used, even with a reduced number of pressure sensors. However, when a hydraulic model and/or measured data affected by errors are considered, the Sensitivity Matrix is more accurate, with an average error almost 10% lower than the Linear Approximation.

Suggested Citation

  • Irene Marzola & Stefano Alvisi & Marco Franchini, 2022. "A Comparison of Model-Based Methods for Leakage Localization in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5711-5727, November.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:14:d:10.1007_s11269-022-03329-4
    DOI: 10.1007/s11269-022-03329-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03329-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03329-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reza Moasheri & Mohammadreza Jalili-Ghazizadeh, 2020. "Locating of Probabilistic Leakage Areas in Water Distribution Networks by a Calibration Method Using the Imperialist Competitive Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 35-49, January.
    2. Juan Li & Wenjun Zheng & Changgang Lu, 2022. "An Accurate Leakage Localization Method for Water Supply Network Based on Deep Learning Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2309-2325, May.
    3. E. Pacchin & F. Gagliardi & S. Alvisi & M. Franchini, 2019. "A Comparison of Short-Term Water Demand Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1481-1497, March.
    4. Juan Li & Ying Wu & Wenjun Zheng & Changgang Lu, 2021. "A Model-Based Bayesian Framework for Pipeline Leakage Enumeration and Location Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4381-4397, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentina Marsili & Filippo Mazzoni & Stefano Alvisi & Marco Franchini, 2024. "From Pressure to Water Consumption: Exploiting High-Resolution Pressure Data to Investigate the End Uses of Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 4969-4985, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengyu & Wang, Xiufang & Jiang, Chunlei & Bi, Hongbo & Liu, Yongzhi & Yan, Wendi & Zhang, Cong & Dong, Taiji & Sun, Yu, 2024. "Advanced transformer model for simultaneous leakage aperture recognition and localization in gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Mohanaprasad Kothandaraman & Zijian Law & Morris A. G. Ezra & Chang Hong Pua & Uma Rajasekaran, 2022. "Water Pipeline Leak Measurement Using Wavelet Packet-based Adaptive ICA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1973-1989, April.
    3. Sehyeong Kim & Sanghoon Jun & Donghwi Jung, 2022. "Ensemble CNN Model for Effective Pipe Burst Detection in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5049-5061, October.
    4. Pham Duc Dai, 2023. "A Real Time Optimization Based Sequential Convex Program for Pressure Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4751-4768, September.
    5. L. Berardi & O. Giustolisi, 2021. "Calibration of Design Models for Leakage Management of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2537-2551, June.
    6. Wang Pengfei & Jiang Zhiqiang & Duan Jiefeng, 2023. "Burst Analysis of Water Supply Pipe Based on Hydrodynamic Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2161-2179, March.
    7. Salah L. Zubaidi & Sandra Ortega-Martorell & Patryk Kot & Rafid M. Alkhaddar & Mawada Abdellatif & Sadik K. Gharghan & Maytham S. Ahmed & Khalid Hashim, 2020. "A Method for Predicting Long-Term Municipal Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1265-1279, February.
    8. Shipeng Chu & Tuqiao Zhang & Xinhong Zhou & Tingchao Yu & Yu Shao, 2022. "An Efficient Approach for Nodal Water Demand Estimation in Large-scale Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 491-505, January.
    9. Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    10. Caspar V. C. Geelen & Doekle R. Yntema & Jaap Molenaar & Karel J. Keesman, 2021. "Burst Detection by Water Demand Nowcasting Based on Exogenous Sensors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1183-1196, March.
    11. Jens Kley-Holsteg & Florian Ziel, 2020. "Probabilistic Multi-Step-Ahead Short-Term Water Demand Forecasting with Lasso," Papers 2005.04522, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:14:d:10.1007_s11269-022-03329-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.