IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i8d10.1007_s11269-021-02847-x.html
   My bibliography  Save this article

Calibration of Design Models for Leakage Management of Water Distribution Networks

Author

Listed:
  • L. Berardi

    (University “G. D’Annunzio” of Chieti Pescara)

  • O. Giustolisi

    (Technical University of Bari)

Abstract

Water losses in urban water distribution networks (WDN) accelerate the deterioration of such infrastructures. The enhanced hydraulic modelling provides a phenomenological representation of WDN hydraulics, including the modelling of leakages as function of pipe average pressure and deterioration. The methodological use of such models on real WDN was demonstrated to support the planning of leakage management actions. Nonetheless, many water utilities are still in the process of designing flow/pressure monitoring, thus data available are not enough to perform detailed calibration of such models. This work presents a physically based approach for the calibration of WDN hydraulic models aimed at supporting leakage management plans since early stages. The proposed procedure leverages the key role of mass balance in enhanced hydraulic models and the technical insight on pipe deterioration mechanisms for various quantity and quality of available data. Two calibration studies of real WDNs demonstrate the feasibility of the approach and show that the distribution of leakages in the WDN does not much influence the pressure values, which confirms the need for flow measurements at monitoring districts for leakage and asset management.

Suggested Citation

  • L. Berardi & O. Giustolisi, 2021. "Calibration of Design Models for Leakage Management of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2537-2551, June.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02847-x
    DOI: 10.1007/s11269-021-02847-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02847-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02847-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reza Moasheri & Mohammadreza Jalili-Ghazizadeh, 2020. "Locating of Probabilistic Leakage Areas in Water Distribution Networks by a Calibration Method Using the Imperialist Competitive Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 35-49, January.
    2. Erfan Hajibandeh & Sara Nazif, 2018. "Pressure Zoning Approach for Leak Detection in Water Distribution Systems Based on a Multi Objective Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2287-2300, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shipeng Chu & Tuqiao Zhang & Xinhong Zhou & Tingchao Yu & Yu Shao, 2022. "An Efficient Approach for Nodal Water Demand Estimation in Large-scale Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 491-505, January.
    2. Meireles, Inês & Sousa, Vitor & Matos, José Pedro & Cruz, Carlos Oliveira, 2023. "Determinants of water loss in Portuguese utilities," Utilities Policy, Elsevier, vol. 83(C).
    3. Yaser Amiri-Ardakani & Mohammad Najafzadeh, 2021. "Pipe Break Rate Assessment While Considering Physical and Operational Factors: A Methodology based on Global Positioning System and Data-Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3703-3720, September.
    4. Dariusz Andraka & Wojciech Kruszyński & Jacek Tyniec & Joanna Gwoździej-Mazur & Bartosz Kaźmierczak, 2023. "Practical Aspects of the Energy Efficiency Evaluation of a Water Distribution Network Using Hydrodynamic Modeling—A Case Study," Energies, MDPI, vol. 16(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham Duc Dai, 2023. "A Real Time Optimization Based Sequential Convex Program for Pressure Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4751-4768, September.
    2. Xiang Xie & Dibo Hou & Xiaoyu Tang & Hongjian Zhang, 2019. "Leakage Identification in Water Distribution Networks with Error Tolerance Capability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1233-1247, February.
    3. Reza Moasheri & Mohammadreza Jalili-Ghazizadeh, 2020. "Locating of Probabilistic Leakage Areas in Water Distribution Networks by a Calibration Method Using the Imperialist Competitive Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 35-49, January.
    4. Sara Azargashb Lord & Seied Mehdy Hashemy Shahdany & Abbas Roozbahani, 2021. "Minimization of Operational and Seepage Losses in Agricultural Water Distribution Systems Using the Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 827-846, February.
    5. Rejeesh Rayaroth & Sivaradje G, 2019. "Random Bagging Classifier and Shuffled Frog Leaping Based Optimal Sensor Placement for Leakage Detection in WDS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3111-3125, July.
    6. Chan-Wook Lee & Do-Guen Yoo, 2021. "Development of Leakage Detection Model and Its Application for Water Distribution Networks Using RNN-LSTM," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    7. Irene Marzola & Stefano Alvisi & Marco Franchini, 2022. "A Comparison of Model-Based Methods for Leakage Localization in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5711-5727, November.
    8. Shipeng Chu & Tuqiao Zhang & Xinhong Zhou & Tingchao Yu & Yu Shao, 2022. "An Efficient Approach for Nodal Water Demand Estimation in Large-scale Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 491-505, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02847-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.