Ensemble CNN Model for Effective Pipe Burst Detection in Water Distribution Systems
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03291-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Juan Li & Wenjun Zheng & Changgang Lu, 2022. "An Accurate Leakage Localization Method for Water Supply Network Based on Deep Learning Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2309-2325, May.
- Symeon E. Christodoulou & Elena Kourti & Agathoklis Agathokleous, 2017. "Waterloss Detection in Water Distribution Networks using Wavelet Change-Point Detection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 979-994, February.
- KiJeon Nam & Pouya Ifaei & Sungku Heo & Gahee Rhee & Seungchul Lee & ChangKyoo Yoo, 2019. "An Efficient Burst Detection and Isolation Monitoring System for Water Distribution Networks Using Multivariate Statistical Techniques," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sanghoon Jun & Kevin E. Lansey, 2023. "Convolutional Neural Network for Burst Detection in Smart Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3729-3743, July.
- Wang Pengfei & Jiang Zhiqiang & Duan Jiefeng, 2023. "Burst Analysis of Water Supply Pipe Based on Hydrodynamic Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2161-2179, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jing Cheng & Sen Peng & Rui Cheng & Xingqi Wu & Xu Fang, 2022. "Burst Area Identification of Water Supply Network by Improved DenseNet Algorithm with Attention Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5425-5442, November.
- Irene Marzola & Stefano Alvisi & Marco Franchini, 2022. "A Comparison of Model-Based Methods for Leakage Localization in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5711-5727, November.
- Caterina Capponi & Silvia Meniconi & Pedro J. Lee & Bruno Brunone & Marco Cifrodelli, 2020. "Time-domain Analysis of Laboratory Experiments on the Transient Pressure Damping in a Leaky Polymeric Pipe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 501-514, January.
- Kazeem B. Adedeji & Yskandar Hamam, 2020. "Cyber-Physical Systems for Water Supply Network Management: Basics, Challenges, and Roadmap," Sustainability, MDPI, vol. 12(22), pages 1-30, November.
- Wang Pengfei & Jiang Zhiqiang & Duan Jiefeng, 2023. "Burst Analysis of Water Supply Pipe Based on Hydrodynamic Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2161-2179, March.
- Ryul Kim & Young Hwan Choi, 2023. "The Development of a Data-Based Leakage Pinpoint Detection Technique for Water Distribution Systems," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
- Li, Pengyu & Wang, Xiufang & Jiang, Chunlei & Bi, Hongbo & Liu, Yongzhi & Yan, Wendi & Zhang, Cong & Dong, Taiji & Sun, Yu, 2024. "Advanced transformer model for simultaneous leakage aperture recognition and localization in gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
More about this item
Keywords
Convolutional neural network; Ensemble; Pipe burst detection; Statistical process control methods; Water distribution system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03291-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.