IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i8d10.1007_s11269-023-03477-1.html
   My bibliography  Save this article

Optimizing Soil Moisture in Subsurface Irrigation System Based on Porous Clay Capsule Technique

Author

Listed:
  • Hojjat Ghorbani Vaghei

    (Gonbad Kavous University(GKU))

  • Hossein Ali Bahrami

    (Tarbiat Modares University(TMU))

  • Farzin Nasiri Saleh

    (Tarbiat Modares University(TMU))

Abstract

Water, a limited resource in most parts of the world, has always been a threat to arid and semi-arid zones. Using the sub-irrigation method with the clay capsule technique is one of the most practical strategies for conserving water and reducing water consumption in arid and semi-arid areas. A clay capsule is one of the porous pipes in a sub-irrigation system that can release water near the root zone. This paper has attempted to improve the physical and hydraulic properties of clay capsules based on changing the percentage of organic matter in the raw material (G0). The raw material used in making clay capsules is obtained from the calcareous soil of Nasr Abad village of Gorgan, Iran. The ratio of rice bran husk flour to G0 as improving hydraulic properties was 1:2, 1:5, 1: 10, 1:15, and 1:20 (kg of rice bran to kg of air-dried soil). The produced clay capsules were named G2, G5, G10, G15, and G20 respectively. The water discharge and soil water distribution of clay capsules were measured at 10, 25, 50, 80, and 100 kPa of hydrostatic pressures with a discharge-pressure automation instrument. The findings revealed a positive and significant relationship between increasing organic matter levels and the discharge of porous clay capsules. Unlike in G2 and G5, the relationship between discharges and hydrostatic pressure is linear in G10, G15, and G20. Meanwhile, the soil wetting shape followed a spherical trend due to the slow seepage of clay capsules. However, the soil-wetting shapes in G10, G15, and G20 were spherical and trended to vertical ellipsoids in G5 and G2. This method is of high importance for irrigating plants, especially in arid and semi-arid regions, and can efficiently manage the water shortage problem.

Suggested Citation

  • Hojjat Ghorbani Vaghei & Hossein Ali Bahrami & Farzin Nasiri Saleh, 2023. "Optimizing Soil Moisture in Subsurface Irrigation System Based on Porous Clay Capsule Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3037-3051, June.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:8:d:10.1007_s11269-023-03477-1
    DOI: 10.1007/s11269-023-03477-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03477-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03477-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahra Jafari & Sayed Hamid Matinkhah & Mohammad Reza Mosaddeghi, 2022. "Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5335-5352, November.
    2. ST. Elmaloglou & N. Malamos, 2007. "Estimation of Width and Depth of the Wetted Soil Volume Under a Surface Emitter, Considering Root Water-Uptake and Evaporation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1325-1340, August.
    3. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Siyal, A.A. & van Genuchten, M. Th. & Skaggs, T.H., 2013. "Solute transport in a loamy soil under subsurface porous clay pipe irrigation," Agricultural Water Management, Elsevier, vol. 121(C), pages 73-80.
    5. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    6. Abu-Zreig, Majed M. & Abe, Yukuo & Isoda, Hiroko, 2006. "The auto-regulative capability of pitcher irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 272-278, October.
    7. Stamatios Elmaloglou & Konstantinos Soulis & Nicholas Dercas, 2013. "Simulation of Soil Water Dynamics Under Surface Drip Irrigation from Equidistant Line Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4131-4148, September.
    8. Naik, B.S. & Panda, R.K. & Nayak, S.C. & Sharma, S.D., 2008. "Hydraulics and salinity profile of pitcher irrigation in saline water condition," Agricultural Water Management, Elsevier, vol. 95(10), pages 1129-1134, October.
    9. Bainbridge, David A., 2001. "Buried clay pot irrigation: a little known but very efficient traditional method of irrigation," Agricultural Water Management, Elsevier, vol. 48(2), pages 79-88, June.
    10. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    11. R. González Perea & E. Camacho Poyato & P. Montesinos & J. A. Rodríguez Díaz, 2016. "Optimization of Irrigation Scheduling Using Soil Water Balance and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2815-2830, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    2. Evgenia Mahler, 2024. "Innovations in Clay-Based Irrigation Technologies—A Systematic Review," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    3. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    4. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Nazari, Ehsan & Besharat, Sina & Zeinalzadeh, Kamran & Mohammadi, Adel, 2021. "Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Cai, Yaohui & Wu, Pute & Gao, Xiaodong & Zhu, Delan & Zhang, Lin & Dai, Zhiguang & Chau, Henry Wai & Zhao, Xining, 2022. "Subsurface irrigation with ceramic emitters: Evaluating soil water effects under multiple precipitation scenarios," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Kilic, Murat, 2020. "A new analytical method for estimating the 3D volumetric wetting pattern under drip irrigation system," Agricultural Water Management, Elsevier, vol. 228(C).
    8. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Pachpute, J.S., 2010. "A package of water management practices for sustainable growth and improved production of vegetable crop in labour and water scarce Sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 97(9), pages 1251-1258, September.
    10. Jun Zhang & Lin Li, 2022. "Spatial and Temporal Characteristics of Infiltration Wetting Front of Ring-Shaped Root Emitters," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    11. Naik, B.S. & Panda, R.K. & Nayak, S.C. & Sharma, S.D., 2008. "Hydraulics and salinity profile of pitcher irrigation in saline water condition," Agricultural Water Management, Elsevier, vol. 95(10), pages 1129-1134, October.
    12. Naghedifar, Seyed Mohammadreza & Ziaei, Ali Naghi & Ansari, Hossein, 2018. "Simulation of irrigation return flow from a Triticale farm under sprinkler and furrow irrigation systems using experimental data: A case study in arid region," Agricultural Water Management, Elsevier, vol. 210(C), pages 185-197.
    13. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    14. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    15. Giuliani, Nicola & Aguzzoni, Agnese & Penna, Daniele & Tagliavini, Massimo, 2023. "Estimating uptake and internal transport dynamics of irrigation water in apple trees using deuterium-enriched water," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    18. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    19. Fabio V. Difonzo & Costantino Masciopinto & Michele Vurro & Marco Berardi, 2021. "Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2553-2567, June.
    20. Lima, F.A & Martínez-Romero, A. & Tarjuelo, J.M. & Córcoles, J.I., 2018. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part I): Model Development," Agricultural Water Management, Elsevier, vol. 210(C), pages 49-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:8:d:10.1007_s11269-023-03477-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.