IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v304y2024ics0378377424004037.html
   My bibliography  Save this article

A hybrid variable flux irrigation model for mitigating agroecological impacts of straw incorporation and furrow ridge system in rice-wheat rotations

Author

Listed:
  • Amisi, Edwin O.
  • Li, Yinian
  • He, Riyin
  • Ding, Qishuo
  • Xu, Gaoming
  • Areru, Degaga Petros

Abstract

Shifting from traditional puddled transplanted rice to mechanized drilled-seeding, combined with rotary straw mixing and furrow irrigation, has proven to be a crucial strategy for reducing methane emissions while optimizing resource utilization and productivity. However, this technique introduces other challenges, such as furrow runoff and soil erosion, which contribute to the degradation of ridge/bed soil quality, fertilizer loss, and transport of agroecological pollutants. Therefore, this study explores a hybrid variable flux irrigation (VFI) model as a decision support tool to mitigate these limitations by controlling soil anoxia and runoff in furrow-irrigated rice after straw incorporation. The approach integrates the Hydrus 2D/3D with optimal loop controllers to adjust pump operations based on specific soil moisture levels, variable flux, and furrow water flow depths. Experimental validation and a field case study were conducted in Babaiqiao, Nanjing City, China, where rotary straw mixing and furrow-ridge layouts were applied alongside dry rice seeding and soil hydraulic experiments. The performance indicators of the Hydrus 2D/3D variable flux demonstrated reliable simulation of lateral wetting rates and soil moisture content with R2 of 0.79 and 0.89, corresponding RMSE values of 7.90 % and 7.60 %, and MRE values of 1.85 m/day and 0.07 cm³/cm³, respectively. The VFI model proved effective, indicating that the optimal irrigation schedule consisted of three distinct supply regimes. During each cycle, the pump operated intermittently, running for approximately 2.66 hours. VFI led to a 33 % reduction in pumping energy costs while simultaneously mitigating soil anoxia and furrow runoff, thus a potential to reduce the environmental footprint of rice-wheat rotations. Although rice yields under drilled seeding were reduced by 9.56 % compared to flood irrigation due to heavy weed infestation, the VFI model provides valuable insights for promoting straw incorporation and implementing practical solutions that support optimal water utilization and sustainable productivity.

Suggested Citation

  • Amisi, Edwin O. & Li, Yinian & He, Riyin & Ding, Qishuo & Xu, Gaoming & Areru, Degaga Petros, 2024. "A hybrid variable flux irrigation model for mitigating agroecological impacts of straw incorporation and furrow ridge system in rice-wheat rotations," Agricultural Water Management, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004037
    DOI: 10.1016/j.agwat.2024.109067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahra Jafari & Sayed Hamid Matinkhah & Mohammad Reza Mosaddeghi, 2022. "Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5335-5352, November.
    2. Horst, M.G. & Shamutalov, S.S. & Pereira, L.S. & Goncalves, J.M., 2005. "Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 210-231, August.
    3. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    4. Numbi, B.P. & Zhang, J. & Xia, X., 2014. "Optimal energy management for a jaw crushing process in deep mines," Energy, Elsevier, vol. 68(C), pages 337-348.
    5. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    6. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    7. Maniruzzaman, M. & Talukder, M.S.U. & Khan, M.H. & Biswas, J.C. & Nemes, A., 2015. "Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 331-340.
    8. Wanjiru, Evan M. & Xia, Xiaohua, 2015. "Energy-water optimization model incorporating rooftop water harvesting for lawn irrigation," Applied Energy, Elsevier, vol. 160(C), pages 521-531.
    9. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Gaoming Xu & Yixuan Xie & Md. A. Matin & Ruiyin He & Qishuo Ding, 2022. "Effect of Straw Length, Stubble Height and Rotary Speed on Residue Incorporation by Rotary Tillage in Intensive Rice–Wheat Rotation System," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    11. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    12. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    13. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    14. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    15. Darzi-Naftchali, Abdullah & Karandish, Fatemeh & Šimůnek, Jiří, 2018. "Numerical modeling of soil water dynamics in subsurface drained paddies with midseason drainage or alternate wetting and drying management," Agricultural Water Management, Elsevier, vol. 197(C), pages 67-78.
    16. Anjali Chaudhary & V. Venkatramanan & Ajay Kumar Mishra & Sheetal Sharma, 2023. "Agronomic and Environmental Determinants of Direct Seeded Rice in South Asia," Circular Economy and Sustainability, Springer, vol. 3(1), pages 253-290, March.
    17. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    18. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    19. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jiří & Shi, Haibin & Chen, Ning & Hu, Qi, 2023. "Quantifying water and salt movement in a soil-plant system of a corn field using HYDRUS (2D/3D) and the stable isotope method," Agricultural Water Management, Elsevier, vol. 288(C).
    20. Araujo, Danielle F. & Costa, Raimundo N. & Mateos, Luciano, 2019. "Pros and cons of furrow irrigation on smallholdings in northeast Brazil," Agricultural Water Management, Elsevier, vol. 221(C), pages 25-33.
    21. Mehmood, Faisal & Wang, Guangshuai & Abubakar, Sunusi Amin & Zain, Muhammad & Rahman, Shafeeq Ur & Gao, Yang & Duan, Aiwang, 2023. "Optimizing irrigation management sustained grain yield, crop water productivity, and mitigated greenhouse gas emissions from the winter wheat field in North China Plain," Agricultural Water Management, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    2. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    3. Loureiro, Dália & Beceiro, Paula & Moreira, Madalena & Arranja, Carina & Cordeiro, Diana & Alegre, Helena, 2023. "A comprehensive performance assessment system for diagnosis and decision-support to improve water and energy efficiency and its demonstration in Portuguese collective irrigation systems," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    5. dos Santos Almeida, Alexsandro Claudio & Mamédio, Mário Roberto & Goelzer, Ademar & Rodrigues, Lucas Araujo & Mateos, Luciano, 2023. "Shared centre pivot. An experience of smallholder irrigation in Midwest Brazil," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2016. "Model predictive control strategy of energy-water management in urban households," Applied Energy, Elsevier, vol. 179(C), pages 821-831.
    7. Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
    8. Hao Zhu & Xiaoning He & Shuqi Shang & Zhuang Zhao & Haiqing Wang & Ying Tan & Chengpeng Li & Dongwei Wang, 2022. "Evaluation of Soil-Cutting and Plant-Crushing Performance of Rotary Blades with Double-Eccentric Circular-Edge Curve for Harvesting Cyperus esculentus," Agriculture, MDPI, vol. 12(6), pages 1-21, June.
    9. Kenjabaev, Shavkat & Forkutsa, I. & Bach, M. & Frede, H.-G., 2013. "Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159114, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.
    10. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    11. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    12. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    13. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    14. Yunfei Feng & Yi Zhang & Zhaodan Wu & Quanliang Ye & Xinchun Cao, 2023. "Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    15. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    16. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    17. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    18. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    19. Luís Loures & José Gama & José Rato Nunes & António Lopez-Piñeiro, 2017. "Assessing the Sodium Exchange Capacity in Rainfed and Irrigated Soils in the Mediterranean Basin Using GIS," Sustainability, MDPI, vol. 9(3), pages 1-12, March.
    20. Haiyan Fang, 2021. "Responses of Runoff and Soil Loss on Slopes to Land Use Management and Rainfall Characteristics in Northern China," IJERPH, MDPI, vol. 18(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.