A Time Series Prediction Model of Foundation Pit Deformation Based on Empirical Wavelet Transform and NARX Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Juan D. Borrero & Jesús Mariscal & Alfonso Vargas-Sánchez, 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors," Stats, MDPI, vol. 5(4), pages 1-14, November.
- Oksana Mandrikova & Yuryi Polozov & Nataly Zhukova & Yulia Shichkina, 2022. "Approximation and Analysis of Natural Data Based on NARX Neural Networks Involving Wavelet Filtering," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhilong Wang & Chen Wang & Jie Wu, 2016. "Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms," Sustainability, MDPI, vol. 8(11), pages 1-32, November.
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Suiling Wang & Zhiqiang Jiang & Hairong Zhang, 2022. "Correction of Reservoir Runoff Forecast Based on Multi-scenario Division and Multi Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5277-5296, October.
- Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
- Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
- Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
- Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
- Teng, Wei & Ding, Xian & Cheng, Hao & Han, Chen & Liu, Yibing & Mu, Haihua, 2019. "Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform," Renewable Energy, Elsevier, vol. 136(C), pages 393-402.
- Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
- Goudarzi, Arman & Viray, Z.N.C. & Siano, Pierluigi & Swanson, Andrew G. & Coller, John V. & Kazemi, Mehdi, 2017. "A probabilistic determination of required reserve levels in an energy and reserve co-optimized electricity market with variable generation," Energy, Elsevier, vol. 130(C), pages 258-275.
- Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
- Richmond, M. & Sobey, A. & Pandit, R. & Kolios, A., 2020. "Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning," Renewable Energy, Elsevier, vol. 161(C), pages 650-661.
- Hu, Weicheng & Yang, Qingshan & Chen, Hua-Peng & Yuan, Ziting & Li, Chen & Shao, Shuai & Zhang, Jian, 2021. "New hybrid approach for short-term wind speed predictions based on preprocessing algorithm and optimization theory," Renewable Energy, Elsevier, vol. 179(C), pages 2174-2186.
- Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Yuanyuan Zhang, 2022. "Method of Predicting SOH and RUL of Lithium-Ion Battery Based on the Combination of LSTM and GPR," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
- Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).
- Ahmad, Tanveer & Chen, Huanxin & Shair, Jan, 2018. "Water source heat pump energy demand prognosticate using disparate data-mining based approaches," Energy, Elsevier, vol. 152(C), pages 788-803.
- Jiang, Meihui & An, Haizhong & Jia, Xiaoliang & Sun, Xiaoqi, 2017. "The influence of global benchmark oil prices on the regional oil spot market in multi-period evolution," Energy, Elsevier, vol. 118(C), pages 742-752.
- Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).
- Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
- Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
More about this item
Keywords
empirical wavelet transform; NARX model; combinatorial prediction; foundation pit excavation; surface deformation prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1535-:d:410643. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.