Comparative study of very short-term flood forecasting using physics-based numerical model and data-driven prediction model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-021-04582-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohamed Hamitouche & Jose-Luis Molina, 2022. "A Review of AI Methods for the Prediction of High-Flow Extremal Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3859-3876, August.
- Adisa Hammed Akinsoji & Bashir Adelodun & Qudus Adeyi & Rahmon Abiodun Salau & Golden Odey & Kyung Sook Choi, 2024. "Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4735-4761, September.
- Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
- Renata Graf & Viktor Vyshnevskyi, 2022. "Forecasting Monthly River Flows in Ukraine under Different Climatic Conditions," Resources, MDPI, vol. 11(12), pages 1-24, November.
More about this item
Keywords
Flood forecasting; Early warning; Radar rainfall; SVM model; WASH123D; HEC-HMS;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04582-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.