IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i1d10.1007_s11069-021-04582-3.html
   My bibliography  Save this article

Comparative study of very short-term flood forecasting using physics-based numerical model and data-driven prediction model

Author

Listed:
  • Fiaz Hussain

    (National Central University
    PMAS-Arid Agriculture University Rawalpindi)

  • Ray-Shyan Wu

    (National Central University)

  • Jing-Xue Wang

    (National Central University)

Abstract

Reliable hourly flood forecasting using weather radar rainfall data for early warning system is essential for reducing natural disaster risk during extreme typhoon events. This study proposed a novel approach integrated with physics-based WASH123D and HEC-HMS models to forecast 1 h ahead flood level in the Fengshan Creek basin, northern Taiwan. The comparison was done with data-driven support vector machine (SVM) model, and performances were assessed by using statistical indicators (root mean square error, correlation coefficient, the error of time to peak flood level, the error of peak flood). Four typhoons and two plum rain events (with 620 data sets) were selected for the process of model calibration and validation. The model performs better when it used quantitative precipitation estimate radar data rather than rain gauge data. Results of using 1 h ahead quantitative precipitation forecast (QPF) as input for flood forecasting were encouraging but not feasible to use directly for early flood warning system due to errors in peak flood levels and timing. Therefore, the improvement in accuracy of 1 h ahead flood forecasting was done using physics-based approach and SVM model. The systematic comparison revealed that the SVM model is an attractive way out to improve the accuracy of QPF forecasted flood levels but unable to fully describe the flood level patterns in terms of timings and flood peaks, while the results obtained by the physics-based approach were accurate and much better than the SVM model. The approach fully described the physics of hydrograph patterns and outputs have exactly the same 1 h ahead predictions, in excellent agreement with observations. The reliable and accurate reflections of timing and amount of flood peaks in all selected typhoons by a newly developed physics-based approach with its operational nature are recommended to use by the government in the future for early warning to reduce the flood impacts during typhoon events.

Suggested Citation

  • Fiaz Hussain & Ray-Shyan Wu & Jing-Xue Wang, 2021. "Comparative study of very short-term flood forecasting using physics-based numerical model and data-driven prediction model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 249-284, May.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04582-3
    DOI: 10.1007/s11069-021-04582-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04582-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04582-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Hamitouche & Jose-Luis Molina, 2022. "A Review of AI Methods for the Prediction of High-Flow Extremal Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3859-3876, August.
    2. Adisa Hammed Akinsoji & Bashir Adelodun & Qudus Adeyi & Rahmon Abiodun Salau & Golden Odey & Kyung Sook Choi, 2024. "Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4735-4761, September.
    3. Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
    4. Renata Graf & Viktor Vyshnevskyi, 2022. "Forecasting Monthly River Flows in Ukraine under Different Climatic Conditions," Resources, MDPI, vol. 11(12), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04582-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.