Uncertainty Quantification of Water Level Predictions from Radar‐based Areal Rainfall Using an Adaptive MCMC Algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-021-02835-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chi Zhang & Martin F. Lambert & Jinzhe Gong & Aaron C. Zecchin & Angus R. Simpson & Mark L. Stephens, 2020. "Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2807-2820, July.
- Wei Zhang & Tian Li, 2015. "The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2059-2072, April.
- Wentao Xu & Cong Jiang & Lei Yan & Lingqi Li & Shuonan Liu, 2018. "An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1343-1366, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sang Ug Kim & Cheol-Eung Lee, 2021. "Incorporation of Cost-Benefit Analysis Considering Epistemic Uncertainty for Calculating the Optimal Design Flood," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 757-774, January.
- Hongshi Xu & Kui Xu & Lingling Bin & Jijian Lian & Chao Ma, 2018. "Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China," IJERPH, MDPI, vol. 15(7), pages 1-20, June.
- Bartosz Szeląg & Adam Kiczko & Grzegorz Łagód & Francesco Paola, 2021. "Relationship Between Rainfall Duration and Sewer System Performance Measures Within the Context of Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5073-5087, December.
- Yuyin Liang & Shuguang Liu & Yiping Guo & Hong Hua, 2017. "L-Moment-Based Regional Frequency Analysis of Annual Extreme Precipitation and its Uncertainty Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3899-3919, September.
- A. C. Cebrián & J. Abaurrea & J. Asín & E. Segarra, 2019. "Dynamic Regression Model for Hourly River Level Forecasting Under Risk Situations: an Application to the Ebro River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 523-537, January.
- Lei Yan & Lihua Xiong & Qinghua Luan & Cong Jiang & Kunxia Yu & Chong-Yu Xu, 2020. "On the Applicability of the Expected Waiting Time Method in Nonstationary Flood Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2585-2601, June.
- Hairong Zhang & Jianzhong Zhou & Lei Ye & Xiaofan Zeng & Yufan Chen, 2015. "Lower Upper Bound Estimation Method Considering Symmetry for Construction of Prediction Intervals in Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5505-5519, December.
- Zening Wu & Bingyan Ma & Huiliang Wang & Caihong Hu & Hong Lv & Xiangyang Zhang, 2021. "Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2115-2128, May.
More about this item
Keywords
Bayesian approach; Delayed rejection and adaptive Metropolis algorithm; Uncertainty quantification; Urban flood management; Radar‐based forecasts;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:7:d:10.1007_s11269-021-02835-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.