IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p184-d473508.html
   My bibliography  Save this article

Spillage Forecast Models in Hydroelectric Power Plants Using Information from Telemetry Stations and Hydraulic Control

Author

Listed:
  • Pedro H. M. Nascimento

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

  • Vinícius A. Cabral

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

  • Ivo C. Silva Junior

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

  • Frederico F. Panoeiro

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

  • Leonardo M. Honório

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

  • André L. M. Marcato

    (Electrical Engineering Postgraduate Program, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

Abstract

Hydroelectric power plants’ operational decisions are associated with several factors, such as generation planning, water availability and dam safety. One major challenge is to control the water spillage from the reservoir. Although this action represents a loss of energy production, it is a powerful strategy to regulate the reservoir level, ensuring the dam’s safety. The decision to use this strategy must be made in advance based on level and demand predictions. The present work applies supervised machine learning techniques to predict the operating condition of spillage in a hydroelectric plant for 5 h ahead. The use of this method, in real time, aims to assist the operator so that he can make more assertive and safer decisions, avoiding waste of energy resources and increasing the safety of dams. The Random Forest and Multilayer Perceptron methods were used to define the architecture compared to the forecasting capacity. The proposed methodology was applied to a 902.5 MW Hydroelectric Power Plant located on the Tocantins River, Brazil. The results demonstrate effective assistance to operators in the decision-making, presenting accuracy of up to 99.15% for the spill decision.

Suggested Citation

  • Pedro H. M. Nascimento & Vinícius A. Cabral & Ivo C. Silva Junior & Frederico F. Panoeiro & Leonardo M. Honório & André L. M. Marcato, 2021. "Spillage Forecast Models in Hydroelectric Power Plants Using Information from Telemetry Stations and Hydraulic Control," Energies, MDPI, vol. 14(1), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:184-:d:473508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & B. Gharehpetian, G., 2017. "Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 116-129.
    3. Anderson Passos de Aragão & Patrícia Teixeira Leite Asano & Ricardo de Andrade Lira Rabêlo, 2020. "A Reservoir Operation Policy Using Inter-Basin Water Transfer for Maximizing Hydroelectric Benefits in Brazil," Energies, MDPI, vol. 13(10), pages 1-26, May.
    4. Fredo, Guilherme Luiz Minetto & Finardi, Erlon Cristian & de Matos, Vitor Luiz, 2019. "Assessing solution quality and computational performance in the long-term generation scheduling problem considering different hydro production function approaches," Renewable Energy, Elsevier, vol. 131(C), pages 45-54.
    5. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Lucas dos Santos Abreu & Erlon Cristian Finardi, 2022. "Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems," Energies, MDPI, vol. 15(5), pages 1-23, February.
    2. Ramon Abritta & Frederico Panoeiro & Leonardo Honório & Ivo Silva Junior & André Marcato & Anapaula Guimarães, 2020. "Hydroelectric Operation Optimization and Unexpected Spillage Indications," Energies, MDPI, vol. 13(20), pages 1-20, October.
    3. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    4. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    5. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    6. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    7. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    8. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    9. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    10. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    11. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    12. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    13. Edna S. Solano & Payman Dehghanian & Carolina M. Affonso, 2022. "Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection," Energies, MDPI, vol. 15(19), pages 1-18, September.
    14. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    15. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    16. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    17. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    18. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    19. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    20. Paik, Chunhyun & Chung, Yongjoo & Kim, Young Jin, 2021. "ELCC-based capacity credit estimation accounting for uncertainties in capacity factors and its application to solar power in Korea," Renewable Energy, Elsevier, vol. 164(C), pages 833-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:184-:d:473508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.