IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i5d10.1007_s11269-018-1903-y.html
   My bibliography  Save this article

A Comparative Assessment of Models to Predict Monthly Rainfall in Australia

Author

Listed:
  • Adil M. Bagirov

    (Federation University Australia)

  • Arshad Mahmood

    (Federation University Australia)

Abstract

Accurate rainfall prediction is a challenging task. It is especially challenging in Australia where the climate is highly variable. Australia’s climatic zones range from high rainfall tropical regions in the north to the driest desert region in the interior. The performance of prediction models may vary depending on climatic conditions. It is, therefore, important to assess and compare the performance of these models in different climatic zones. This paper examines the performance of data driven models such as the support vector machines for regression, the multiple linear regression, the k-nearest neighbors and the artificial neural networks for monthly rainfall prediction in Australia depending on climatic conditions. Rainfall data with five meteorological variables over the period of 1970–2014 from 24 geographically diverse weather stations are used for this purpose. The prediction performance of each model was evaluated by comparing observed and predicted rainfall using various measures for prediction accuracy.

Suggested Citation

  • Adil M. Bagirov & Arshad Mahmood, 2018. "A Comparative Assessment of Models to Predict Monthly Rainfall in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1777-1794, March.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:5:d:10.1007_s11269-018-1903-y
    DOI: 10.1007/s11269-018-1903-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1903-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1903-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447, September.
    2. Jehangir Awan & Deg-Hyo Bae, 2014. "Improving ANFIS Based Model for Long-term Dam Inflow Prediction by Incorporating Monthly Rainfall Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1185-1199, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meysam Ghamariadyan & Monzur A. Imteaz, 2021. "Prediction of Seasonal Rainfall with One-year Lead Time Using Climate Indices: A Wavelet Neural Network Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5347-5365, December.
    2. Farhana Islam & Monzur Alam Imteaz, 2022. "A Novel Hybrid Approach for Predicting Western Australia’s Seasonal Rainfall Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3649-3672, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kym Anderson & Signe Nelgen & Ernesto Valenzuela & Glyn Wittwer, 2009. "Economic contributions and characteristics of grapes and wine in AustraliaÂ’s wine regions," Centre for International Economic Studies Working Papers 2009-01, University of Adelaide, Centre for International Economic Studies.
    2. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    3. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    4. Kaidonis, Mary & Moerman, Lee & Rudkin, Kathy, 2009. "Paradigm, paradox, paralysis: An epistemic process," Accounting forum, Elsevier, vol. 33(4), pages 285-289.
    5. Nigel Martin & John Rice, 2010. "Analysing emission intensive firms as regulatory stakeholders: a role for adaptable business strategy," Business Strategy and the Environment, Wiley Blackwell, vol. 19(1), pages 64-75, January.
    6. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.
    7. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    8. Foster, John & Bell, William Paul & Wild, Phillip & Sharma, Deepak & Sandu, Suwin & Froome, Craig & Wagner, Liam & Misra, Suchi & Bagia, Ravindra, 2013. "Analysis of institutional adaptability to redress electricity infrastructure vulnerability due to climate change," MPRA Paper 47787, University Library of Munich, Germany.
    9. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    10. Giorel Curran, 2011. "Modernising Climate Policy in Australia: Climate Narratives and the Undoing of a Prime Minister," Environment and Planning C, , vol. 29(6), pages 1004-1017, December.
    11. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    12. Raymond Markey & Joseph McIvor & Martin O’Brien & Chris F Wright, 2021. "Triggering business responses to climate policy in Australia," Australian Journal of Management, Australian School of Business, vol. 46(2), pages 248-271, May.
    13. Mushtaq, Shahbaz & Cockfield, Geoff & White, Neil & Jakeman, Guy, 2014. "Modelling interactions between farm-level structural adjustment and a regional economy: A case of the Australian rice industry," Agricultural Systems, Elsevier, vol. 123(C), pages 34-42.
    14. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.
    15. Dr Barry Naughten, 2013. "Emissions Pricing, 'Complementary Policies' and 'Direct Action' in the Australian Electricity Supply Sector: 'Lock-in' and Investment," CCEP Working Papers 1304, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    16. Elijido-Ten, Evangeline, 2011. "Media coverage and voluntary environmental disclosures: A developing country exploratory experiment," Accounting forum, Elsevier, vol. 35(3), pages 139-157.
    17. Frank Jotzo & Regina Betz, 2009. "Australia's emissions trading scheme: opportunities and obstacles for linking," Climate Policy, Taylor & Francis Journals, vol. 9(4), pages 402-414, July.
    18. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    19. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    20. Wood, Peter John & Jotzo, Frank, 2011. "Price floors for emissions trading," Energy Policy, Elsevier, vol. 39(3), pages 1746-1753, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:5:d:10.1007_s11269-018-1903-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.