IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i2d10.1007_s11269-019-02460-z.html
   My bibliography  Save this article

Risk Management of Drinking Water Supply in Critical Conditions Using Fuzzy PROMETHEE V Technique

Author

Listed:
  • Mahsa Ghandi

    (University of Tehran)

  • Abbas Roozbahani

    (University of Tehran)

Abstract

Water crisis management in drinking water supply systems is a crucial issue. Many different natural and unnatural disasters cause great damages to these systems. Prioritizing effective strategies by expert decision-makers before any incidence can greatly reduce this damage. Moreover, cost minimization in the provision of these strategies is very essential as the urban crisis management organizations are financially limited. Therefore, this study provided a model for the selection of the most appropriate drinking water supply strategies in crisis conditions, considering possible limitations. Fuzzy PROMTHEE V, a multi-criteria decision-making method, is a new approach developed in this research to help the decision-makers in selecting a set of possible alternatives for drinking water supply management, which are ranked based on five criteria determined by decision-makers (water supply reliability, implementation speed and simplicity, implementation cost, social satisfaction, water quality) and budget limitation as the constraint for the optimization problem. This model was applied in a case study of Tehran city in Iran. Due to the uncertainties in expert opinions and parameters needed for drinking water supply risk management, this model was solved with three fuzzy methods and one non-fuzzy method, and the results were compared. Findings showed that strengthening passive defense in water supply, transportation, and distribution systems; providing water consumption management; encouraging people to save water for emergency conditions and planning to exploit popular forces and performing maneuvers are top-ranked alternatives.

Suggested Citation

  • Mahsa Ghandi & Abbas Roozbahani, 2020. "Risk Management of Drinking Water Supply in Critical Conditions Using Fuzzy PROMETHEE V Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 595-615, January.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:2:d:10.1007_s11269-019-02460-z
    DOI: 10.1007/s11269-019-02460-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02460-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02460-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Alessandro Pagano & Irene Pluchinotta & Raffaele Giordano & Anna Bruna Petrangeli & Umberto Fratino & Michele Vurro, 2018. "Dealing with Uncertainty in Decision-Making for Drinking Water Supply Systems Exposed to Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2131-2145, April.
    3. Le Teno, J. F. & Mareschal, B., 1998. "An interval version of PROMETHEE for the comparison of building products' design with ill-defined data on environmental quality," European Journal of Operational Research, Elsevier, vol. 109(2), pages 522-529, September.
    4. Adel Hatami-Marbini & Madjid Tavana & Alireza Ebrahimi, 2011. "A fully fuzzified data envelopment analysis model," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 3(3), pages 252-264.
    5. M. Fontana & D. Morais, 2013. "Using Promethee V to Select Alternatives so as to Rehabilitate Water Supply Network with Detected Leaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4021-4037, September.
    6. Adachi, Takao & Ellingwood, Bruce R., 2008. "Serviceability of earthquake-damaged water systems: Effects of electrical power availability and power backup systems on system vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 78-88.
    7. Ali Bagheri & Moosa Darijani & Ali Asgary & Saeed Morid, 2010. "Crisis in Urban Water Systems during the Reconstruction Period: A System Dynamics Analysis of Alternative Policies after the 2003 Earthquake in Bam-Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2567-2596, September.
    8. HATAMI-MARBINI, Adel & TAVANA, Madjid & EBRAHIMI, Alireza, 2011. "A fully fuzzified data envelopment analysis model," LIDAM Reprints CORE 2322, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    10. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    11. Bertrand Mareschal & Jean Pierre Brans & Cathy Macharis, 1998. "The GDSS PROMETHEE procedure: a PROMETHEE-GAIA based procedure for group decision support," ULB Institutional Repository 2013/9373, ULB -- Universite Libre de Bruxelles.
    12. Abu-Taleb, Maher F. & Mareschal, Bertrand, 1995. "Water resources planning in the Middle East: Application of the PROMETHEE V multicriteria method," European Journal of Operational Research, Elsevier, vol. 81(3), pages 500-511, March.
    13. Abbas Roozbahani & Banafsheh Zahraie & Massoud Tabesh, 2012. "PROMETHEE with Precedence Order in the Criteria (PPOC) as a New Group Decision Making Aid: An Application in Urban Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3581-3599, September.
    14. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    15. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    16. Sachin K. Patil & Ravi Kant, 2014. "Ranking the barriers of knowledge management adoption in supply chain using fuzzy AHP method," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 8(1), pages 52-75.
    17. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    18. Segrave, A.J. (Andrew) & van der Zouwen, M.W. (Mariëlle) & van Vierssen, W. (Wim), 2014. "Water planning: From what Time Perspective?," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 157-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Duda & Robert Zdechlik & Jarosław Kania, 2021. "Semiquantitative Risk Assessment Method for Groundwater Source Protection Using a Process-based Interdisciplinary Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3373-3394, August.
    2. Wei Liu & Binhao Wang & Zhaoyang Song, 2022. "Failure Prediction of Municipal Water Pipes Using Machine Learning Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1271-1285, March.
    3. Yiqian Zhang & Yutong Dai & Bo Liu, 2023. "Identifying Qualified Public Safety Education Venues Using the Dempster–Shafer Theory-Based PROMETHEE Method under Linguistic Environments," Mathematics, MDPI, vol. 11(4), pages 1-22, February.
    4. Nehal Elshaboury & Tarek Attia & Mohamed Marzouk, 2020. "Comparison of Several Aggregation Techniques for Deriving Analytic Network Process Weights," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4901-4919, December.
    5. Silvia Barbetta & Bianca Bonaccorsi & Stavroula Tsitsifli & Ivana Boljat & Papakonstantinou Argiris & Jasmina Lukač Reberski & Christian Massari & Emanuele Romano, 2022. "Assessment of Flooding Impact on Water Supply Systems: A Comprehensive Approach Based on DSS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5443-5459, November.
    6. Alessandro Pagano & Raffaele Giordano & Michele Vurro, 2021. "A Decision Support System Based on AHP for Ranking Strategies to Manage Emergencies on Drinking Water Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 613-628, January.
    7. Katarzyna Pietrucha-Urbanik & Janusz R. Rak, 2020. "Consumers’ Perceptions of the Supply of Tap Water in Crisis Situations," Energies, MDPI, vol. 13(14), pages 1-20, July.
    8. Ramos-Salgado, Cristóbal & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo & Onieva, Luis, 2021. "A decision support system to design water supply and sewer pipes replacement intervention programs," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    2. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    3. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    4. Marta Bottero & Chiara D’Alpaos & Alessandra Oppio, 2019. "Ranking of Adaptive Reuse Strategies for Abandoned Industrial Heritage in Vulnerable Contexts: A Multiple Criteria Decision Aiding Approach," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    5. Topcu, Y.I & Ulengin, F, 2004. "Energy for the future: An integrated decision aid for the case of Turkey," Energy, Elsevier, vol. 29(1), pages 137-154.
    6. Ulengin, Fusun & Ilker Topcu, Y. & Sahin, Sule Onsel, 2001. "An integrated decision aid system for Bosphorus water-crossing problem," European Journal of Operational Research, Elsevier, vol. 134(1), pages 179-192, October.
    7. Jelena Markovic Brankovic & Milica Markovic & Djordje Nikolic, 2018. "Comparative study of hydraulic structures alternatives using promethee II complete ranking method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3457-3471, August.
    8. Sapfo Τsolaki-Fiaka & George D. Bathrellos & Hariklia D. Skilodimou, 2018. "Multi-Criteria Decision Analysis for an Abandoned Quarry in the Evros Region (NE Greece)," Land, MDPI, vol. 7(2), pages 1-16, April.
    9. Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2007. "Group decision-making for leakage management strategy of water network," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 441-459.
    10. Abbas Roozbahani & Banafsheh Zahraie & Massoud Tabesh, 2012. "PROMETHEE with Precedence Order in the Criteria (PPOC) as a New Group Decision Making Aid: An Application in Urban Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3581-3599, September.
    11. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    12. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    13. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    14. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    15. Laila Oubahman & Szabolcs Duleba, 2022. "A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    16. Ute Weißfloch & Jutta Geldermann, 2016. "Assessment of product-service systems for increasing the energy efficiency of compressed air systems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(3), pages 341-366.
    17. Beynon, Malcolm J. & Wells, Peter, 2008. "The lean improvement of the chemical emissions of motor vehicles based on preference ranking: A PROMETHEE uncertainty analysis," Omega, Elsevier, vol. 36(3), pages 384-394, June.
    18. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    19. Miller, Michael & Mattes, Katharina, 2014. "Demonstration of a multi-criteria based decision support framework for selecting PSS to increase resource efficiency," Working Papers "Sustainability and Innovation" S11/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    20. Jaroslaw Witkowski & Jakub Marcinkowski & Maja Kiba-Janiak, 2020. "A Comparative Analysis of Electronic Freight Exchanges in the United States and Europe with the Use of the Multiple Criteria Decision-Making Method “Promethee”," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 476-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:2:d:10.1007_s11269-019-02460-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.