IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i1d10.1007_s11269-018-2089-z.html
   My bibliography  Save this article

Comparison of Drought Indices in a Semi-Arid River Basin of India

Author

Listed:
  • Pawan S. Wable

    (IIT Kharagpur)

  • Madan K. Jha

    (IIT Kharagpur)

  • Ankit Shekhar

    (IIT Kharagpur)

Abstract

Due to the inherent complexity of drought phenomena, difference in hydro-climatic conditions and watershed characteristics, there is a lack of a universal drought index for assessing drought conditions in a particular region. Hence, the performance evaluation of different drought indices is necessary for identifying a suitable drought index. In this study, the performance of five drought indices was assessed for a semi-arid basin located in western India. The data from nine raingauge stations and four climate stations for the period of 25 years (1985-2009) were used. Based on the data availability, five meteorological drought indices were selected, viz., Percent Departure from Normal (PDN), Effective Drought Index (EDI), Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI), and Standardized Precipitation Evapotranspiration Index (SPEI). Among these drought indices, EDI is a time step independent drought index and other four multi-time scale indices were defined at 1-, 3-, 6-, 9- and 12-month scales. The scale for the comparison of these drought indices was chosen based on the correlation with EDI and within among the scales of multi-time scale drought indices. The performance of drought indices during the historical drought was evaluated based on the relative frequency of drought index in a particular drought severity class and the response of these indices with multi-monthly rainfalls. In addition, the performance of these drought indices was assessed using the decision criteria such as Robustness, Tractability, Transparency, Sophistication, and Extendability. Analysis of the results indicated that the 9-month scale is appropriate for comparing drought indices in the study area. SPEI-9 showed maximum relative frequency in the ‘severe dry’ class and was found sensitive to 9-monthly rainfall at most of the stations. Further, the results of the performance evaluation criteria revealed that SPEI-9 has the highest total weighted score (136) followed by RDI-9, SPI-9, EDI, and PDN-9. It is concluded that SPEI-9 is the most suitable drought index for monitoring drought conditions in the study area.

Suggested Citation

  • Pawan S. Wable & Madan K. Jha & Ankit Shekhar, 2019. "Comparison of Drought Indices in a Semi-Arid River Basin of India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 75-102, January.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2089-z
    DOI: 10.1007/s11269-018-2089-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2089-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2089-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravinesh Deo & Hi-Ryong Byun & Jan Adamowski & Do-Woo Kim, 2015. "A Real-time Flood Monitoring Index Based on Daily Effective Precipitation and its Application to Brisbane and Lockyer Valley Flood Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4075-4093, September.
    2. Mohammad Asadi Zarch & Hossein Malekinezhad & Mohammad Mobin & Mohammad Dastorani & Mohammad Kousari, 2011. "Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3485-3504, October.
    3. Smakhtin, Vladimir U., 2004. "Review, automated estimation and analyses of drought indices in South Asia," IWMI Working Papers H035616, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gokhan Yildirim & Ataur Rahman, 2022. "Spatiotemporal meteorological drought assessment: a case study in south-east Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 305-332, March.
    2. Gokhan Yildirim & Ataur Rahman, 2022. "Homogeneity and trend analysis of rainfall and droughts over Southeast Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1657-1683, June.
    3. L. Vergni & F. Todisco & B. Lena, 2021. "Evaluation of the similarity between drought indices by correlation analysis and Cohen's Kappa test in a Mediterranean area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2187-2209, September.
    4. Anurag Malik & Anil Kumar & Ozgur Kisi & Najeebullah Khan & Sinan Q. Salih & Zaher Mundher Yaseen, 2021. "Analysis of dry and wet climate characteristics at Uttarakhand (India) using effective drought index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1643-1662, January.
    5. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2020. "Ability Assessment of the Stationary and Cyclostationary Time Series Models to Predict Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5009-5029, December.
    6. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    7. Ismallianto Isia & Tony Hadibarata & Muhammad Noor Hazwan Jusoh & Rajib Kumar Bhattacharjya & Noor Fifinatasha Shahedan & Aissa Bouaissi & Norma Latif Fitriyani & Muhammad Syafrudin, 2022. "Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anurag Malik & Anil Kumar & Ozgur Kisi & Najeebullah Khan & Sinan Q. Salih & Zaher Mundher Yaseen, 2021. "Analysis of dry and wet climate characteristics at Uttarakhand (India) using effective drought index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1643-1662, January.
    2. L. Vergni & F. Todisco & B. Lena, 2021. "Evaluation of the similarity between drought indices by correlation analysis and Cohen's Kappa test in a Mediterranean area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2187-2209, September.
    3. Indale Niguse Dejene & Gizachew Kabite Wedajo & Yared A. Bayissa & Ashenif Melese Abraham & Kefalegn Getahun Cherinet, 2023. "Satellite rainfall performance evaluation and application to monitor meteorological drought: a case of Omo-Gibe basin, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 167-201, October.
    4. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    5. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Mohammad Reza Mahmoudi, 2016. "Parametric and Non-Parametric Trend of Drought in Arid and Semi-Arid Regions Using RDI Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5479-5500, November.
    6. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    7. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    8. Paulina Aldunce & Dámare Araya & Rodolfo Sapiain & Issa Ramos & Gloria Lillo & Anahí Urquiza & René Garreaud, 2017. "Local Perception of Drought Impacts in a Changing Climate: The Mega-Drought in Central Chile," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    9. Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Gerkani Nezhad Moshizi, Zahra & Shamili, Mansoureh, 2019. "Virtual water trade and water footprint accounting of Saffron production in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 368-374.
    10. Mohammed Achite & Ommolbanin Bazrafshan & Okan Mert Katipoğlu & Zahra Azhdari, 2023. "Evaluation of hydro-meteorological drought indices for characterizing historical droughts in the Mediterranean climate of Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 427-453, August.
    11. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    12. Oleg Smirnov & Martin C. Steinwand & Tingyin Xiao & Minghua Zhang, 2018. "Climate Impacts, Political Institutions, and Leader Survival: Effects of Droughts and Flooding Precipitation," Economics of Disasters and Climate Change, Springer, vol. 2(2), pages 181-201, July.
    13. Muhammad Imran Khan & Dong Liu & Qiang Fu & Qaisar Saddique & Muhammad Abrar Faiz & Tianxiao Li & Muhammad Uzair Qamar & Song Cui & Chen Cheng, 2017. "Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3921-3937, September.
    14. Youssef Ahmed & Furat Al-Faraj & Miklas Scholz & Akram Soliman, 2019. "Assessment of Upstream Human Intervention Coupled with Climate Change Impact for a Transboundary River Flow Regime: Nile River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2485-2500, May.
    15. Furat A. M. Al-Faraj & Dimitris Tigkas, 2016. "Impacts of Multi-year Droughts and Upstream Human-Induced Activities on the Development of a Semi-arid Transboundary Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5131-5143, November.
    16. Neda Khanmohammadi & Hossein Rezaie & Javad Behmanesh, 2022. "Investigation of Drought Trend on the Basis of the Best Obtained Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1355-1375, March.
    17. Poulomi Ganguli & M. Reddy, 2012. "Risk Assessment of Droughts in Gujarat Using Bivariate Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3301-3327, September.
    18. Mohammad Kousari & Mohammad Asadi Zarch & Hossein Ahani & Hemila Hakimelahi, 2013. "A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005," Climatic Change, Springer, vol. 120(1), pages 277-298, September.
    19. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    20. Pawan K. Chaubey & Prashant K. Srivastava & Akhilesh Gupta & R. K. Mall, 2021. "Integrated assessment of extreme events and hydrological responses of Indo-Nepal Gandak River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8643-8668, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2089-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.