IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i3d10.1007_s11269-015-1208-3.html
   My bibliography  Save this article

Research and Application of Parallel Normal Cloud Mutation Shuffled Frog Leaping Algorithm in Cascade Reservoirs Optimal Operation

Author

Listed:
  • Ping Sun

    (POWERCHINA Beijing Engineering Corporation Limited)

  • Zhi-qiang Jiang

    (Huazhong University of Science and Technology)

  • Ting-ting Wang

    (POWERCHINA Beijing Engineering Corporation Limited)

  • Yan-ke Zhang

    (North China Electric Power University)

Abstract

In order to improve the premature convergence problem of traditional shuffled frog leaping algorithm (SFLA), this paper proposed a normal cloud mutation shuffled frog leaping algorithm (NCM-SFLA) by mixing the cloud model algorithm (NCM) with SFLA algorithm, NCM is used to overcome the shortage of SFLA which is easy to fall into local optimal solution. The proposed NCM-SFLA has a good parallel characteristic, and the parallel computing can be implemented easily in multi core environment. In case study, this paper takes the Li Xianjiang cascade reservoirs in China as an instance to solve the cascade reservoirs operation optimization problem by the proposed NCM-SFLA. The results show that, compared with the Multi- dimensional Dynamic Programming (MDP), NCM-SFLA has the better global search ability and faster convergence speed, and the corresponding parallel computing can effectively shorten the run-time of NCM-SFLA. Therefore, the feasibility and rationality of the proposed NCM-SFLA and its parallel computing are effectively proved by the case study results.

Suggested Citation

  • Ping Sun & Zhi-qiang Jiang & Ting-ting Wang & Yan-ke Zhang, 2016. "Research and Application of Parallel Normal Cloud Mutation Shuffled Frog Leaping Algorithm in Cascade Reservoirs Optimal Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1019-1035, February.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:3:d:10.1007_s11269-015-1208-3
    DOI: 10.1007/s11269-015-1208-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-015-1208-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-015-1208-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbas Afshar & Fariborz Massoumi & Amin Afshar & Miquel Mariño, 2015. "State of the Art Review of Ant Colony Optimization Applications in Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3891-3904, September.
    2. Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.
    3. Hamid Bashiri-Atrabi & Kourosh Qaderi & David Rheinheimer & Erfaneh Sharifi, 2015. "Application of Harmony Search Algorithm to Reservoir Operation Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5729-5748, December.
    4. Bo Ming & Jian-xia Chang & Qiang Huang & Yi-min Wang & Sheng-zhi Huang, 2015. "Optimal Operation of Multi-Reservoir System Based-On Cuckoo Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5671-5687, December.
    5. Takriti, Samer & Krasenbrink, Benedikt, 1999. "A decomposition approach for the fuel-constrained economic power-dispatch problem," European Journal of Operational Research, Elsevier, vol. 112(2), pages 460-466, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Yang & Kan Yang & Lyuwen Su & Hu Hu, 2020. "The Short-Term Economical Operation Problem for Hydropower Station Using Chaotic Normal Cloud Model Based Discrete Shuffled Frog Leaping Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 905-927, February.
    2. Qiang Zou & Li Liao & Hui Qin, 2020. "Fast Comprehensive Flood Risk Assessment Based on Game Theory and Cloud Model Under Parallel Computation (P-GT-CM)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1625-1648, March.
    3. Guohua Fang & Yuxue Guo & Xin Wen & Xiaomin Fu & Xiaohui Lei & Yu Tian & Ting Wang, 2018. "Multi-Objective Differential Evolution-Chaos Shuffled Frog Leaping Algorithm for Water Resources System Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3835-3852, September.
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    5. Jiang, Zhiqiang & Li, Anqiang & Ji, Changming & Qin, Hui & Yu, Shan & Li, Yuanzheng, 2016. "Research and application of key technologies in drawing energy storage operation chart by discriminant coefficient method," Energy, Elsevier, vol. 114(C), pages 774-786.
    6. Zhe Yang & Kan Yang & Hu Hu & Lyuwen Su, 2019. "The Cascade Reservoirs Multi-Objective Ecological Operation Optimization Considering Different Ecological Flow Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 207-228, January.
    7. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.
    8. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    9. Yang, Zhe & Wang, Yufeng & Yang, Kan, 2022. "The stochastic short-term hydropower generation scheduling considering uncertainty in load output forecasts," Energy, Elsevier, vol. 241(C).
    10. Yufei Ma & Ping-an Zhong & Bin Xu & Feilin Zhu & Yao Xiao & Qingwen Lu, 2020. "Multidimensional Parallel Dynamic Programming Algorithm Based on Spark for Large-Scale Hydropower Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3427-3444, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    2. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    3. Mohammad Azizipour & Vahid Ghalenoei & M. H. Afshar & S. S. Solis, 2016. "Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3995-4009, September.
    4. Mohammad Ehteram & Hojat Karami & Saeed Farzin, 2018. "Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2539-2560, May.
    5. Chuanxiong Kang & Cheng Chen & Jinwen Wang, 2018. "An Efficient Linearization Method for Long-Term Operation of Cascaded Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3391-3404, August.
    6. Thibaut Cuvelier & Pierre Archambeau & Benjamin Dewals & Quentin Louveaux, 2018. "Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1599-1614, March.
    7. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    8. Yong Peng & Anbang Peng & Xiaoli Zhang & Huicheng Zhou & Lin Zhang & Wenzhong Wang & Zixin Zhang, 2017. "Multi-Core Parallel Particle Swarm Optimization for the Operation of Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 27-41, January.
    9. Yuan, Xiaohui & Su, Anjun & Yuan, Yanbin & Nie, Hao & Wang, Liang, 2009. "An improved PSO for dynamic load dispatch of generators with valve-point effects," Energy, Elsevier, vol. 34(1), pages 67-74.
    10. Vartika Paliwal & Aniruddha D. Ghare & Ashwini B. Mirajkar & Neeraj Dhanraj Bokde & Andrés Elías Feijóo Lorenzo, 2019. "Computer Modeling for the Operation Optimization of Mula Reservoir, Upper Godavari Basin, India, Using the Jaya Algorithm," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    11. Nagarajan Shanmugavel & Rema Rajendran, 2022. "Adoption of Rainwater Harvesting: a Dual-factor Approach by Integrating Theory of Planned Behaviour and Norm Activation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2827-2845, June.
    12. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    13. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    14. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    15. Unai Aldasoro & Laureano Escudero & María Merino & Juan Monge & Gloria Pérez, 2015. "On parallelization of a stochastic dynamic programming algorithm for solving large-scale mixed 0–1 problems under uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 703-742, October.
    16. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    17. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    18. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.
    19. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.
    20. Shintaro Negishi & Takashi Ikegami, 2021. "Robust Scheduling for Pumping in a Water Distribution System under the Uncertainty of Activating Regulation Reserves," Energies, MDPI, vol. 14(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:3:d:10.1007_s11269-015-1208-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.