IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i13d10.1007_s11269-019-02385-7.html
   My bibliography  Save this article

Performance Evaluation of a Fuzzy Hybrid Clustering Technique to Identify Flood Source Areas

Author

Listed:
  • Naser Dehghanian

    (Shahid Beheshti University)

  • S. Saeid Mousavi Nadoushani

    (Shahid Beheshti University)

  • Bahram Saghafian

    (Islamic Azad University)

  • Ruhangiz Akhtari

    (Soil Conservation and Watershed Management Research Institute (SCWMRI))

Abstract

Prioritization of flood source areas (FSAs) is of paramount importance in flood management to adopt proportional measures within a watershed. Unit Flood Response (UFR) approach has been proposed to identify FSAs at subwatershed and/or cell scale. In this study, a distributed modified Clark (ModClark) model coupled with Muskingum flow routing method was used for hydrological simulations. Furthermore, SOMFCM clustering techniques involving Self-Organizing Feature Maps (SOFM) and Fuzzy C-Means algorithm (FCM) were used to identify Hydrologic Homogenous Regions (HHRs). The case studies were two semi-arid watersheds including Tangrah in northeastern Iran and eastern part of Walnut Gulch Experimental Watershed (WGEW) in Arizona. DEM-derived geomorphological and hydrological features were entered into Factor Analysis (FA) to determine the most effective variables in runoff generation. The optimum SOMFCM resulted in clustered HHRs map which was generally similar to that of the UFR-delineated FSAs at cell scale, especially in cases of maximum flood index values for both watersheds. Although clustering techniques, such as SOMFCM, cannot directly provide a map of FSAs involving absolute values of flood index, most dominant watershed physical features may be used to identify the most critical, or effective FSAs through clustered HHRs. Application of SOMFCM in two semi-arid watersheds demonstrated that SOMFCM provides a simple and useful tool to qualitatively identify the ranking of FSAs across a watershed. Therefore, the clustered HHRs involving higher ranks of FSAs that represent the most flood active regions, are expected to assist policymakers for effective management of floods.

Suggested Citation

  • Naser Dehghanian & S. Saeid Mousavi Nadoushani & Bahram Saghafian & Ruhangiz Akhtari, 2019. "Performance Evaluation of a Fuzzy Hybrid Clustering Technique to Identify Flood Source Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4621-4636, October.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02385-7
    DOI: 10.1007/s11269-019-02385-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02385-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02385-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    2. Saeed Golian & Bahram Saghafian & Reza Maknoon, 2010. "Derivation of Probabilistic Thresholds of Spatially Distributed Rainfall for Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3547-3559, October.
    3. R. Gopakumar & Kaoru Takara & E. James, 2007. "Hydrologic Data Exploration and River Flow Forecasting of a Humid Tropical River Basin Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1915-1940, November.
    4. Remah F. Foda & Ayman G. Awadallah & Mohamed A. Gad, 2017. "A Fast Semi Distributed Rainfall Runoff Model for Engineering Applications in Arid and Semi-Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4941-4955, December.
    5. Bahram Saghafian & Saeed Golian & Alireza Ghasemi, 2014. "Flood frequency analysis based on simulated peak discharges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 403-417, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erfan Mahmoodi & Mahmood Azari & Mohammad Taghi Dastorani & Aryan Salvati, 2024. "Comparison of Hydrological Modeling, Artificial Neural Networks and Multi-Criteria Decision Making Approaches for Determining Flood Source Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5343-5363, October.
    2. Tianwei Mu & Yan Lu & Haoqiang Tan & Haowen Zhang & Chengzhi Zheng, 2021. "Random Walks Partitioning and Network Reliability Assessing in Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2325-2341, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.
    2. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    3. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    4. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    5. Jean-Marie Zokagoa & Azzeddine Soulaïmani & Pierre Dupuis, 2021. "Flood risk mapping using uncertainty propagation analysis on a peak discharge: case study of the Mille Iles River in Quebec," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 285-310, May.
    6. V. Montesarchio & F. Napolitano & M. Rianna & E. Ridolfi & F. Russo & S. Sebastianelli, 2015. "Comparison of methodologies for flood rainfall thresholds estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 909-934, January.
    7. Y. R. Fan & G. H. Huang & Y. P. Li & X. Q. Wang & Z. Li, 2016. "Probabilistic Prediction for Monthly Streamflow through Coupling Stepwise Cluster Analysis and Quantile Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5313-5331, November.
    8. Fränz Zeimetz & Bettina Schaefli & Guillaume Artigue & Javier García Hernández & Anton J. Schleiss, 2018. "Swiss Rainfall Mass Curves and their Influence on Extreme Flood Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2625-2638, June.
    9. Bagher Heidarpour & Bahram Saghafian & Jafar Yazdi & Hazi Mohammad Azamathulla, 2017. "Effect of Extraordinary Large Floods on at-site Flood Frequency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4187-4205, October.
    10. Mehdi Rezaeian Zadeh & Seifollah Amin & Davar Khalili & Vijay Singh, 2010. "Daily Outflow Prediction by Multi Layer Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2673-2688, September.
    11. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    12. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    13. Shiang-Jen Wu & Chih-Tsung Hsu & Ho-Cheng Lien & Che-Hao Chang, 2015. "Modeling the effect of uncertainties in rainfall characteristics on flash flood warning based on rainfall thresholds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1677-1711, January.
    14. Wei Li & Jianzhong Zhou & Huaiwei Sun & Kuaile Feng & Hairong Zhang & Muhammad Tayyab, 2017. "Impact of Distribution Type in Bayes Probability Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 961-977, February.
    15. Michalis Diakakis, 2012. "Rainfall thresholds for flood triggering. The case of Marathonas in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 789-800, February.
    16. A. Sharafati & H. M. Azamathulla, 2018. "Assessment of Dam Overtopping Reliability using SUFI Based Overtopping Threshold Curve," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2369-2383, May.
    17. Ahmet Ozan Celik & Volkan Kiricci & Canberk Insel, 2017. "Reassessment of the flood damage at a river diversion hydropower plant site: lessons learned from a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 833-847, March.
    18. Bahram Saghafian & Saeed Golian & Mohammad Elmi & Ruhangiz Akhtari, 2013. "Monte Carlo analysis of the effect of spatial distribution of storms on prioritization of flood source areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1059-1071, March.
    19. Wei Li & Jianzhong Zhou & Lu Chen & Kuaile Feng & Hairong Zhang & Changqing Meng & Na Sun, 2019. "Upper and Lower Bound Interval Forecasting Methodology Based on Ideal Boundary and Multiple Linear Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1203-1215, February.
    20. Daniela Biondi & Davide Luca, 2015. "Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1015-1038, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02385-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.