IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i11p2673-2688.html
   My bibliography  Save this article

Daily Outflow Prediction by Multi Layer Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions

Author

Listed:
  • Mehdi Rezaeian Zadeh
  • Seifollah Amin
  • Davar Khalili
  • Vijay Singh

Abstract

This paper discusses the use of artificial neural network (ANN) models for predicting daily flows from Khosrow Shirin watershed located in the northwest part of Fars province in Iran. A Multi-Layer Perceptron (MLP) neural network was developed using five input vectors leading to five ANN models: MLP1, MLP2, MLP3, MLP4, and MLP5. Two activation functions were used and they were logistic sigmoid and tangent sigmoid. The MLP_Levenberg–Marquardt (LM) algorithm was used for the training of ANN models. A 5-year data record, selected randomly, was used for ANN training and testing. The predicted outflow showed that the tangent sigmoid activation function performed better than did the logistic sigmoid activation function. The values of R 2 and RMSE for MLP4 with the tangent sigmoid activation function for the validation period were equal to 0.89 and 1.7 m 3 /s, respectively. Appropriate input vectors for MLPs were determined by correlation analysis. It was found that antecedent precipitation and discharge with 1 day time lag as an input vector best predicted daily flows. Also, comparison of MLPs showed that an increase in input data was not always useful. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Mehdi Rezaeian Zadeh & Seifollah Amin & Davar Khalili & Vijay Singh, 2010. "Daily Outflow Prediction by Multi Layer Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2673-2688, September.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:11:p:2673-2688
    DOI: 10.1007/s11269-009-9573-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9573-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9573-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Gopakumar & Kaoru Takara & E. James, 2007. "Hydrologic Data Exploration and River Flow Forecasting of a Humid Tropical River Basin Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1915-1940, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
    2. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.
    3. Sunghyun Cho & Dongwoo Kang & Joseph Sang-Il Kwon & Minsu Kim & Hyungtae Cho & Il Moon & Junghwan Kim, 2021. "A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration," Mathematics, MDPI, vol. 9(17), pages 1-12, September.
    4. Jian Tang & Xin-An Yin & Pan Yang & ZhiFeng Yang, 2014. "Assessment of Contributions of Climatic Variation and Human Activities to Streamflow Changes in the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2953-2966, August.
    5. Mohammad Dorofki & Ahmed Elshafie & Othman Jaafar & Othman Karim & Sharifah Abdullah, 2014. "A GIS-ANN-Based Approach for Enhancing the Effect of Slope in the Modified Green-Ampt Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 391-406, January.
    6. Mustafa Turan & Mehmet Yurdusev, 2014. "Predicting Monthly River Flows by Genetic Fuzzy Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4685-4697, October.
    7. Coroianu, Lucian & Costarelli, Danilo & Gal, Sorin G. & Vinti, Gianluca, 2019. "The max-product generalized sampling operators: convergence and quantitative estimates," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 173-183.
    8. Ayoub Zeroual & Mohamed Meddi & Ali A. Assani, 2016. "Artificial Neural Network Rainfall-Discharge Model Assessment Under Rating Curve Uncertainty and Monthly Discharge Volume Predictions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3191-3205, July.
    9. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    10. Bonakdari, Hossein & Khozani, Zohreh Sheikh & Zaji, Amir Hossein & Asadpour, Navid, 2018. "Evaluating the apparent shear stress in prismatic compound channels using the Genetic Algorithm based on Multi-Layer Perceptron: A comparative study," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 400-411.
    11. Seyed Akrami & Vahid Nourani & S. Hakim, 2014. "Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2999-3018, August.
    12. Hirad Abghari & Hojjat Ahmadi & Sina Besharat & Vahid Rezaverdinejad, 2012. "Prediction of Daily Pan Evaporation using Wavelet Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3639-3652, September.
    13. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    14. Mohammad R. Hassanvand & Hojat Karami & Sayed-Farhad Mousavi, 2018. "Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1057-1080, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    2. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    3. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    4. Naser Dehghanian & S. Saeid Mousavi Nadoushani & Bahram Saghafian & Ruhangiz Akhtari, 2019. "Performance Evaluation of a Fuzzy Hybrid Clustering Technique to Identify Flood Source Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4621-4636, October.
    5. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:11:p:2673-2688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.