IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i2d10.1007_s11269-015-1198-1.html
   My bibliography  Save this article

Dealing with Uncertainties in Fresh Water Supply: Experiences in the Netherlands

Author

Listed:
  • Wil Thissen

    (Delft University of Technology
    UNESCO-IHE Institute for Water Education)

  • Jan Kwakkel

    (Delft University of Technology)

  • Marjolein Mens

    (Department of Flood and Drought Risk Analysis
    Twente University)

  • Jeroen Sluijs

    (University of Bergen
    Utrecht University)

  • Sara Stemberger

    (University of Bergen)

  • Arjan Wardekker

    (University of Bergen)

  • Diana Wildschut

    (University of Bergen
    Cooperative University of Amersfoort)

Abstract

Developing fresh water supply strategies for the long term needs to take into account the fact that the future is deeply uncertain. Not only the extent of climate change and the extent and nature of its impacts are unknown, also socio-economic conditions may change in unpredictable ways, as well as social preferences. Often, it is not possible to find solid ground for estimating probabilities for the relevant range of imaginable possible future developments. Yet, some of these may have profound impacts and consequences for society which could be reduced by timely proactive adaptation. In response to these and similar challenges, various approaches, methods and techniques have been proposed and are being developed to specifically address long-term strategy development under so-called deep uncertainty. This paper, first, offers a brief overview of developments in the field of planning under (deep) uncertainty. Next, we illustrate application of three different approaches to fresh water provision planning under uncertainty in case studies in the Netherlands: a resilience approach, oriented to (re) designing fresh water systems in such a way that they will be less vulnerable, resp. will be able to recover easily from future disturbances; a robustness approach, oriented to quantitative assessment of system performance for various system configurations (adaptation options) under a range of external disturbances, and an exploratory modeling approach, developed to explore policy effectiveness and system operation under a very wide set of assumptions about future conditions.

Suggested Citation

  • Wil Thissen & Jan Kwakkel & Marjolein Mens & Jeroen Sluijs & Sara Stemberger & Arjan Wardekker & Diana Wildschut, 2017. "Dealing with Uncertainties in Fresh Water Supply: Experiences in the Netherlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 703-725, January.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:2:d:10.1007_s11269-015-1198-1
    DOI: 10.1007/s11269-015-1198-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-015-1198-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-015-1198-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marjolijn Haasnoot & Hans Middelkoop & Astrid Offermans & Eelco Beek & Willem Deursen, 2012. "Exploring pathways for sustainable water management in river deltas in a changing environment," Climatic Change, Springer, vol. 115(3), pages 795-819, December.
    2. Barnett, Jon, 2001. "Adapting to Climate Change in Pacific Island Countries: The Problem of Uncertainty," World Development, Elsevier, vol. 29(6), pages 977-993, June.
    3. Warren E. Walker & Marjolijn Haasnoot & Jan H. Kwakkel, 2013. "Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty," Sustainability, MDPI, vol. 5(3), pages 1-25, March.
    4. Jonathan, Cave & Lorenzo, Valeri, 2004. "Cyber-Trust," MPRA Paper 83192, University Library of Munich, Germany.
    5. Snelder, M. & van Zuylen, H.J. & Immers, L.H., 2012. "A framework for robustness analysis of road networks for short term variations in supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 828-842.
    6. Hamarat, Caner & Kwakkel, Jan H. & Pruyt, Erik, 2013. "Adaptive Robust Design under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 408-418.
    7. Walker, Warren E. & Rahman, S. Adnan & Cave, Jonathan, 2001. "Adaptive policies, policy analysis, and policy-making," European Journal of Operational Research, Elsevier, vol. 128(2), pages 282-289, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bárbara Brzezinski Azevedo & Tarcísio Abreu Saurin, 2018. "Losses in Water Distribution Systems: A Complexity Theory Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2919-2936, July.
    2. J. J. Warmink & M. Brugnach & J. Vinke-de Kruijf & R. M. J. Schielen & D. C. M. Augustijn, 2017. "Coping with Uncertainty in River Management: Challenges and Ways Forward," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4587-4600, November.
    3. Maartje Bodde & Karin Van der Wel & Peter Driessen & Arjan Wardekker & Hens Runhaar, 2018. "Strategies for Dealing with Uncertainties in Strategic Environmental Assessment: An Analytical Framework Illustrated with Case Studies from The Netherlands," Sustainability, MDPI, vol. 10(7), pages 1-24, July.
    4. Xiaohui Ding & Chen Zhou & Weizhou Zhong & Pingping Tang, 2019. "Addressing Uncertainty of Environmental Governance in Environmentally Sensitive Areas in Developing Countries: A Precise-Strike and Spatial-Targeting Adaptive Governance Framework," Sustainability, MDPI, vol. 11(16), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Raso & Jan Kwakkel & Jos Timmermans, 2019. "Assessing the Capacity of Adaptive Policy Pathways to Adapt on Time by Mapping Trigger Values to Their Outcomes," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    2. Fluixá-Sanmartín, Javier & Escuder-Bueno, Ignacio & Morales-Torres, Adrián & Castillo-Rodríguez, Jesica Tamara, 2020. "Comprehensive decision-making approach for managing time dependent dam risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Pieter Bloemen & Tim Reeder & Chris Zevenbergen & Jeroen Rijke & Ashley Kingsborough, 2018. "Lessons learned from applying adaptation pathways in flood risk management and challenges for the further development of this approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1083-1108, October.
    4. Jan Kwakkel & Marjolijn Haasnoot & Warren Walker, 2015. "Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world," Climatic Change, Springer, vol. 132(3), pages 373-386, October.
    5. Mohanasundar Radhakrishnan & Hong Quan Nguyen & Berry Gersonius & Assela Pathirana & Ky Quang Vinh & Richard M. Ashley & Chris Zevenbergen, 2018. "Coping capacities for improving adaptation pathways for flood protection in Can Tho, Vietnam," Climatic Change, Springer, vol. 149(1), pages 29-41, July.
    6. Moallemi, Enayat A. & Elsawah, Sondoss & Ryan, Michael J., 2020. "Robust decision making and Epoch–Era analysis: A comparison of two robustness frameworks for decision-making under uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    7. Luciano Raso & Jan Kwakkel & Jos Timmermans & Geremy Panthou, 2019. "How to evaluate a monitoring system for adaptive policies: criteria for signposts selection and their model-based evaluation," Climatic Change, Springer, vol. 153(1), pages 267-283, March.
    8. Yujin Jeong & Hyejin Jang & Byungun Yoon, 2021. "Developing a risk-adaptive technology roadmap using a Bayesian network and topic modeling under deep uncertainty," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3697-3722, May.
    9. Maddalen Mendizabal & Nieves Peña & Hans Hooyberghs & Griet Lambrechts & Joel Sepúlveda & Saioa Zorita, 2021. "Lessons Learned from Applying Adaptation Pathways in Heatwave Risk Management in Antwerp and Key Challenges for Further Development," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    10. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    11. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    12. Ram, Camelia, 2020. "Scenario presentation and scenario generation in multi-criteria assessments: An exploratory study," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    13. Sierra C. Woodruff, 2016. "Planning for an unknowable future: uncertainty in climate change adaptation planning," Climatic Change, Springer, vol. 139(3), pages 445-459, December.
    14. Matteo Giuliani & Andrea Castelletti, 2016. "Is robustness really robust? How different definitions of robustness impact decision-making under climate change," Climatic Change, Springer, vol. 135(3), pages 409-424, April.
    15. Julie Shortridge & Seth Guikema & Ben Zaitchik, 2017. "Robust decision making in data scarce contexts: addressing data and model limitations for infrastructure planning under transient climate change," Climatic Change, Springer, vol. 140(2), pages 323-337, January.
    16. Meng Meng & Marcin Dabrowski & Dominic Stead, 2020. "Enhancing Flood Resilience and Climate Adaptation: The State of the Art and New Directions for Spatial Planning," Sustainability, MDPI, vol. 12(19), pages 1-23, September.
    17. B. Gersonius & J. Rijke & R. Ashley & P. Bloemen & E. Kelder & C. Zevenbergen, 2016. "Adaptive Delta Management for flood risk and resilience in Dordrecht, The Netherlands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 201-216, June.
    18. Judy Lawrence & Robert Bell & Adolf Stroombergen, 2019. "A Hybrid Process to Address Uncertainty and Changing Climate Risk in Coastal Areas Using Dynamic Adaptive Pathways Planning, Multi-Criteria Decision Analysis & Real Options Analysis: A New Zealand App," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    19. Junyu Zhang & Dafang Fu & Christian Urich & Rajendra Prasad Singh, 2018. "Accelerated Exploration for Long-Term Urban Water Infrastructure Planning through Machine Learning," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    20. Jan H. Kwakkel, 2019. "A generalized many‐objective optimization approach for scenario discovery," Futures & Foresight Science, John Wiley & Sons, vol. 1(2), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:2:d:10.1007_s11269-015-1198-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.