IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i12p4241-4267.html
   My bibliography  Save this article

Reverse Flood Routing in Natural Channels using Genetic Algorithm

Author

Listed:
  • G. Zucco
  • G. Tayfur
  • T. Moramarco

Abstract

Establishing a clear overview of data discharge availability for water balance modelling in basins is a priority in Europe, and in the particular in the framework of the system of Economic and Environmental Accounts for Water (SEEAW) developed by the EU Directorate-General for the Environment. However, accurate discharge estimation at a river site depends on rating curve reliability usually defined by recording the water level at a gauged section and carrying out streamflow measurements. Local stage monitoring is fairly straightforward and relatively inexpensive compared to the cost to carry out flow velocity measurements which are, in addition, hindered by high flow. Moreover, hydraulic models may not be ideally suitable to serve the purpose of rating curve extension or its development at a river site upstream/downstream where the discharge is known due to their prohibitive requirement of channel cross-section details and roughness information at closer intervals. Likewise, rainfall-runoff transformation might be applied but its accuracy is tightly linked to detailed information in terms of geomorphological characteristics of intermediate basins as well as rainfall pattern data. On this basis, a procedure for reverse flood routing in natural channels is here proposed for three different configurations of hydrometric monitoring of a river reach where lateral flow is significant and no rainfall data are available for the intermediate basin. The first considers only the downstream channel end as a gauged site where discharge and stages are recorded. The second configuration assumes the downstream end as a gauged site but only in terms of stage. The third configuration envisages both channel ends equipped to recording stages. The channel geometry is known only at channel ends. The developed model has basically four components: (1) the inflow hydrograph is expressed by a Pearson Type-III distribution, involving parameters of peak discharge, time to peak, and a shape factor; (2) the basic continuity equation for flow routing written in the characteristic form is employed; (3) the lateral flow is related to stages at channel ends. (4) the relation between local stage and remote discharge as found by Moramarco et al. (2005b) is exploited. The parameters, coefficients and exponents of the model are obtained, for each configuration, using the genetic algorithm method. Three equipped river branches along the Tiber River in central Italy are used to validate the procedure. Analyses are carried out for three significant flood events occurred along the river and where the lateral flow was significant. Results show the good performance of the procedure for all three monitoring configurations. Specifically, the discharge hydrographs assessed at channel ends are found satisfactory both in terms of shape with a Nash-Sutcliffe ranging overall in the interval (0.755–0.972) and in the reproduction of rating curves at channel ends. Finally, by a synthetic test the performance of the developed procedure is compared to that of the hydraulic model coupled with a hydrologic model. Two river reaches are considered, the first along the Tiber River and the second one located in the Rio Grande basin which is a tributary of the Tiber River. Detailed channel geometry data are available for both the river sections. Results showed the effectiveness of the reverse flood routing to reproducing fairly well the hydrographs simulated by the hydraulic model in the three monitoring investigated configurations. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • G. Zucco & G. Tayfur & T. Moramarco, 2015. "Reverse Flood Routing in Natural Channels using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4241-4267, September.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4241-4267
    DOI: 10.1007/s11269-015-1058-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1058-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1058-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhabagrahi Sahoo, 2013. "Field Application of the Multilinear Muskingum Discharge Routing Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1193-1205, March.
    2. Bhabagrahi Sahoo & Muthiah Perumal & Tommaso Moramarco & Silvia Barbetta, 2014. "Rating Curve Development at Ungauged River Sites using Variable Parameter Muskingum Discharge Routing Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3783-3800, September.
    3. Gokmen Tayfur & Vijay Singh, 2011. "Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1253-1267, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Gąsiorowski & Romuald Szymkiewicz, 2022. "Inverse Flood Routing Using Simplified Flow Equations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4115-4135, September.
    2. Ming Hu & Guo H. Huang & Wei Sun & Xiaowen Ding & Yongping Li & Bin Fan, 2016. "Optimization and Evaluation of Environmental Operations for Three Gorges Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3553-3576, August.
    3. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    4. Maryam Soleimani-Alyar & Alireza Ghaffari-Hadigheh & Fatemeh Sadeghi, 2016. "Controlling Floods by Optimization Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4053-4062, September.
    5. Aryan Salvati & Alireza Moghaddam Nia & Ali Salajegheh & Parham Moradi & Yazdan Batmani & Shahabeddin Najafi & Ataollah Shirzadi & Himan Shahabi & Akbar Sheikh-Akbari & Changhyun Jun & John J. Clague, 2023. "Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2657-2690, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    2. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    3. Gokmen Tayfur & Luca Brocca, 2015. "Fuzzy Logic for Rainfall-Runoff Modelling Considering Soil Moisture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3519-3533, August.
    4. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    5. Asli Ulke & Gokmen Tayfur & Sevinc Ozkul, 2017. "Investigating a Suitable Empirical Model and Performing Regional Analysis for the Suspended Sediment Load Prediction in Major Rivers of the Aegean Region, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 739-764, February.
    6. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    7. Bhabagrahi Sahoo & Muthiah Perumal & Tommaso Moramarco & Silvia Barbetta, 2014. "Rating Curve Development at Ungauged River Sites using Variable Parameter Muskingum Discharge Routing Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3783-3800, September.
    8. Roohollah Noori & Hossien Sheikhian & Farhad Hooshyaripor & Ali Naghikhani & Jan Franklin Adamowski & Behzad Ghiasi, 2017. "Granular Computing for Prediction of Scour Below Spillways," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 313-326, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4241-4267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.