IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v46y1998i2p184-197.html
   My bibliography  Save this article

Stochastic Network Interdiction

Author

Listed:
  • Kelly J. Cormican

    (Naval Postgraduate School, Monterey, California)

  • David P. Morton

    (The University of Texas at Austin, Austin, Texas)

  • R. Kevin Wood

    (Naval Postgraduate School, Monterey, California)

Abstract

Using limited assets, an interdictor attempts to destroy parts of a capacitated network through which an adversary will subsequently maximize flow. We formulate and solve a stochastic version of the interdictor's problem: Minimize the expected maximum flow through the network when interdiction successes are binary random variables. Extensions are made to handle uncertain arc capacities and other realistic variations. These two-stage stochastic integer programs have applications to interdicting illegal drugs and to reducing the effectiveness of a military force moving materiel, troops, information, etc., through a network in wartime. Two equivalent model formulations allow Jensen's inequality to be used to compute both lower and upper bounds on the objective, and these bounds are improved within a sequential approximation algorithm. Successful computational results are reported on networks with over 100 nodes, 80 interdictable arcs, and 180 total arcs.

Suggested Citation

  • Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
  • Handle: RePEc:inm:oropre:v:46:y:1998:i:2:p:184-197
    DOI: 10.1287/opre.46.2.184
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.46.2.184
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.46.2.184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. C. Huang & W. T. Ziemba & A. Ben-Tal, 1977. "Bounds on the Expectation of a Convex Function of a Random Variable: With Applications to Stochastic Programming," Operations Research, INFORMS, vol. 25(2), pages 315-325, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bomze, Immanuel M. & Gabl, Markus & Maggioni, Francesca & Pflug, Georg Ch., 2022. "Two-stage stochastic standard quadratic optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 21-34.
    2. Morton, David P. & Dokov, Steftcho & Popova, Ivilina, 2023. "Efficient portfolios computed with moment-based bounds," Finance Research Letters, Elsevier, vol. 51(C).
    3. Francesca Maggioni & Elisabetta Allevi & Marida Bertocchi, 2016. "Monotonic bounds in multistage mixed-integer stochastic programming," Computational Management Science, Springer, vol. 13(3), pages 423-457, July.
    4. Francesca Maggioni & Elisabetta Allevi & Asgeir Tomasgard, 2020. "Bounds in multi-horizon stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 605-625, September.
    5. David R. Cariño & William T. Ziemba, 1998. "Formulation of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 433-449, August.
    6. Gupta, Diwakar & Hill, Arthur V. & Bouzdine-Chameeva, Tatiana, 2006. "A pricing model for clearing end-of-season retail inventory," European Journal of Operational Research, Elsevier, vol. 170(2), pages 518-540, April.
    7. Steftcho P. Dokov & David P. Morton, 2005. "Second-Order Lower Bounds on the Expectation of a Convex Function," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 662-677, August.
    8. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    9. Alexander H. Gose & Brian T. Denton, 2016. "Sequential Bounding Methods for Two-Stage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 351-369, May.
    10. T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:46:y:1998:i:2:p:184-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.