IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v343y2024i1d10.1007_s10479-024-06157-4.html
   My bibliography  Save this article

A modified scenario bundling method for shortest path network interdiction under endogenous uncertainty

Author

Listed:
  • Somayeh Sadeghi

    (Amirkabir University of Technology)

  • Abbas Seifi

    (Amirkabir University of Technology)

Abstract

We consider a shortest-path network interdiction problem under endogenous uncertainty on successful detection. Endogenous uncertainty arises from the fact that the interdictor may decide to enforce surveillance on some critical arcs, which would affect the prior probability of success on those arcs. The evader decision is formulated as a two-stage stochastic programming problem. In a “here and now situation”, he has to choose the shortest path in the network before realizing detection scenarios. Then, in the second stage, the evader tries to minimize the expected cost of being detected over all possible scenarios. We consider binary scenarios to represent whether or not the evader is detected on each path and apply a linearization method to deal with the non-linearity in the decision-dependent probability measure. A decomposition method is used to solve the proposed model for a case study of a worldwide drug trafficking network. The case study is concerned with finding the most critical arcs for interdicting drug trafficking. Numerical results show that a tiny increase in the probability of opium seizures leads to a significant change in the expected cost when the critical arcs are interdicted. Due to the exponential number of scenarios, the model could not be solved in a reasonable time. Common scenario reduction methods are designed for exogenous uncertainty. We apply an improved bundling method to reduce the number of scenarios in case of endogenous uncertainty. Computational results show that our method reduces the model size and solution time tremendously without significantly affecting the objective value.

Suggested Citation

  • Somayeh Sadeghi & Abbas Seifi, 2024. "A modified scenario bundling method for shortest path network interdiction under endogenous uncertainty," Annals of Operations Research, Springer, vol. 343(1), pages 429-457, December.
  • Handle: RePEc:spr:annopr:v:343:y:2024:i:1:d:10.1007_s10479-024-06157-4
    DOI: 10.1007/s10479-024-06157-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06157-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06157-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajay Malaviya & Chase Rainwater & Thomas Sharkey, 2012. "Multi-period network interdiction problems with applications to city-level drug enforcement," IISE Transactions, Taylor & Francis Journals, vol. 44(5), pages 368-380.
    2. Maryam Soleimani-Alyar & Alireza Ghaffari-Hadigheh & Fatemeh Sadeghi, 2016. "Controlling Floods by Optimization Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4053-4062, September.
    3. Kelly J. Cormican & David P. Morton & R. Kevin Wood, 1998. "Stochastic Network Interdiction," Operations Research, INFORMS, vol. 46(2), pages 184-197, April.
    4. Yongjia Song & Siqian Shen, 2016. "Risk-Averse Shortest Path Interdiction," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 527-539, August.
    5. Rashid Anzoom & Rakesh Nagi & Chrysafis Vogiatzis, 2021. "A review of research in illicit supply-chain networks and new directions to thwart them," IISE Transactions, Taylor & Francis Journals, vol. 54(2), pages 134-158, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    2. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    3. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    4. Maryam Soleimani-Alyar & Alireza Ghaffari-Hadigheh & Fatemeh Sadeghi, 2016. "Controlling Floods by Optimization Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4053-4062, September.
    5. Collado, Ricardo & Meisel, Stephan & Priekule, Laura, 2017. "Risk-averse stochastic path detection," European Journal of Operational Research, Elsevier, vol. 260(1), pages 195-211.
    6. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    7. Utsav Sadana & Erick Delage, 2023. "The Value of Randomized Strategies in Distributionally Robust Risk-Averse Network Interdiction Problems," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 216-232, January.
    8. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Enayaty-Ahangar, Forough & Rainwater, Chase E. & Sharkey, Thomas C., 2019. "A Logic-based Decomposition Approach for Multi-Period Network Interdiction Models," Omega, Elsevier, vol. 87(C), pages 71-85.
    10. Huff, Johnathon D. & Leonard, William B. & Medal, Hugh R., 2022. "The wireless network jamming problem subject to protocol interference using directional antennas and with battery capacity constraints," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    11. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    12. Alice Paul & Susan E. Martonosi, 2024. "The all-pairs vitality-maximization (VIMAX) problem," Annals of Operations Research, Springer, vol. 338(2), pages 1019-1048, July.
    13. Tezcan, Barış & Maass, Kayse Lee, 2023. "Human trafficking interdiction with decision dependent success," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    14. Shen, Yeming & Sharkey, Thomas C. & Szymanski, Boleslaw K. & Wallace, William (Al), 2021. "Interdicting interdependent contraband smuggling, money and money laundering networks," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    15. Burcu B. Keskin & Gregory J. Bott & Nickolas K. Freeman, 2021. "Cracking Sex Trafficking: Data Analysis, Pattern Recognition, and Path Prediction," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1110-1135, April.
    16. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    17. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.
    18. Jabarzare, Ziba & Zolfagharinia, Hossein & Najafi, Mehdi, 2020. "Dynamic interdiction networks with applications in illicit supply chains," Omega, Elsevier, vol. 96(C).
    19. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Harald Held & Raymond Hemmecke & David L. Woodruff, 2005. "A decomposition algorithm applied to planning the interdiction of stochastic networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 321-328, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:343:y:2024:i:1:d:10.1007_s10479-024-06157-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.