IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i15p5533-5550.html
   My bibliography  Save this article

Nonstationary Flood Frequency Analysis for Annual Flood Peak Series, Adopting Climate Indices and Check Dam Index as Covariates

Author

Listed:
  • Jianzhu Li
  • Senming Tan

Abstract

Traditionally, flood frequency analysis under the assumption of stationarity has been a cornerstone and there is mature technology applied in practice. However, recent evidences of the impact of climate variability and anthropogenic factors have thrown into question the applicability of stationary hypothesis. In this study, Kendall’s tau and Spearman’s rho correlation test were adopted to detect the relationship between climate indices (PDO, NAO, AO, NPO and ENSO) and annual flood peak data. The test results showed that NPO and Niño3 had significant correlations with the flood peak which could prove the climate cause of non-stationarity. Niño3 is used herein to describe ENSO. We also proposed a check dam index (CDI p ) to represent the effect of human activities that caused nonstationarity on flood. The CDI p was based on the estimated storage capacity and drainage area of large number of check dams and small hydraulic structures. A framework for nonstationary flood frequency analysis was developed through Generalized Additive Models in Location, Scale and Shape (GAMLSS), and two models based on GAMLSS were applied to the annual flood peak. The model results that incorporated climate indices (NPO and Niño3) and CDI p as covariates in the parameters of the selected distribution exhibited an undulate behavior, which could better describe nonstationarity than the model with only time dependence. For a reservoir index (RI) proposed by López and Francés ( 2013 ) which is similar to CDI p , we established two contrast models and the result revealed that CDI p is superior to RI. These results highlight the necessity of flood frequency analysis under nonstationary conditions, and alternative definitions of return period should be adapted. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Jianzhu Li & Senming Tan, 2015. "Nonstationary Flood Frequency Analysis for Annual Flood Peak Series, Adopting Climate Indices and Check Dam Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5533-5550, December.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:15:p:5533-5550
    DOI: 10.1007/s11269-015-1133-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1133-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1133-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Vasiliades & P. Galiatsatou & A. Loukas, 2015. "Nonstationary Frequency Analysis of Annual Maximum Rainfall Using Climate Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 339-358, January.
    2. Runtong Zhang & Zhenji Zhang & Kecheng Liu & Juliang Zhang (ed.), 2015. "Liss 2013," Springer Books, Springer, number 978-3-642-40660-7, June.
    3. Didier Haguma & Robert Leconte & Pascal Côté & Stéphane Krau & François Brissette, 2014. "Optimal Hydropower Generation Under Climate Change Conditions for a Northern Water Resources System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4631-4644, October.
    4. Sandra Mourato & Madalena Moreira & João Corte-Real, 2015. "Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2377-2391, May.
    5. Luo, Jiawen & Chen, Langnan & Liu, Hao, 2013. "Distribution characteristics of stock market liquidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6004-6014.
    6. Hang Zeng & Ping Feng & Xin Li, 2014. "Reservoir Flood Routing Considering the Non-Stationarity of Flood Series in North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4273-4287, September.
    7. M. Viola & C. Mello & S. Beskow & L. Norton, 2014. "Impacts of Land-use Changes on the Hydrology of the Grande River Basin Headwaters, Southeastern Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4537-4550, October.
    8. Zhenji Zhang & Zuojun Max Shen & Juliang Zhang & Runtong Zhang (ed.), 2015. "Liss 2014," Springer Books, Springer, edition 127, number 978-3-662-43871-8, June.
    9. Peng Shi & Xinxin Ma & Yuanbing Hou & Qiongfang Li & Zhicai Zhang & Simin Qu & Chao Chen & Tao Cai & Xiuqin Fang, 2013. "Effects of Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1263-1278, March.
    10. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    11. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    12. Rajesh Nune & Biju George & Pardhasaradhi Teluguntla & Andrew Western, 2014. "Relating Trends in Streamflow to Anthropogenic Influences: A Case Study of Himayat Sagar Catchment, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1579-1595, April.
    13. J. Rolf Olsen & James H. Lambert & Yacov Y. Haimes, 1998. "Risk of Extreme Events Under Nonstationary Conditions," Risk Analysis, John Wiley & Sons, vol. 18(4), pages 497-510, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatih Dikbaş, 2018. "A New Two-Dimensional Rank Correlation Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1539-1553, March.
    2. Jianzhu Li & Qiushuang Ma & Yu Tian & Yuming Lei & Ting Zhang & Ping Feng, 2019. "Flood scaling under nonstationarity in Daqinghe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 675-696, September.
    3. Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
    4. Yiming Hu & Zhongmin Liang & Vijay P. Singh & Xuebin Zhang & Jun Wang & Binquan Li & Huimin Wang, 2018. "Concept of Equivalent Reliability for Estimating the Design Flood under Non-stationary Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 997-1011, February.
    5. Sandeep Samantaray & Abinash Sahoo, 2024. "Prediction of flow discharge in Mahanadi River Basin, India, based on novel hybrid SVM approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18699-18723, July.
    6. Chi Zhang & Xuezhi Gu & Lei Ye & Qian Xin & Xiaoyang Li & Hairong Zhang, 2023. "Climate Informed Non-stationary Modeling of Extreme Precipitation in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3319-3341, July.
    7. Qi Liao & Ge Yu & Wensheng Jiang & Chunxia Lu & Yan Ma & Kexiu Liu & Qun Lin & Yanping Wang, 2019. "Research on the Risk Assessment of Qingdao Marine Disaster Based on Flooding," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    8. Jianzhu Li & Yuming Lei & Senming Tan & Colin D. Bell & Bernard A. Engel & Yixuan Wang, 2018. "Nonstationary Flood Frequency Analysis for Annual Flood Peak and Volume Series in Both Univariate and Bivariate Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4239-4252, October.
    9. Wentao Xu & Cong Jiang & Lei Yan & Lingqi Li & Shuonan Liu, 2018. "An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1343-1366, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianzhu Li & Yuming Lei & Senming Tan & Colin D. Bell & Bernard A. Engel & Yixuan Wang, 2018. "Nonstationary Flood Frequency Analysis for Annual Flood Peak and Volume Series in Both Univariate and Bivariate Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4239-4252, October.
    2. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    3. Linhan Yang & Jianzhu Li & Aiqing Kang & Shuai Li & Ping Feng, 2020. "The Effect of Nonstationarity in Rainfall on Urban Flooding Based on Coupling SWMM and MIKE21," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1535-1551, March.
    4. Yiming Hu & Zhongmin Liang & Vijay P. Singh & Xuebin Zhang & Jun Wang & Binquan Li & Huimin Wang, 2018. "Concept of Equivalent Reliability for Estimating the Design Flood under Non-stationary Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 997-1011, February.
    5. Huantian Xie & Dingfang Li & Lihua Xiong, 2016. "Exploring the Regional Variance using ARMA-GARCH Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3507-3518, August.
    6. Wentao Xu & Cong Jiang & Lei Yan & Lingqi Li & Shuonan Liu, 2018. "An Adaptive Metropolis-Hastings Optimization Algorithm of Bayesian Estimation in Non-Stationary Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1343-1366, March.
    7. Lei Yan & Lihua Xiong & Qinghua Luan & Cong Jiang & Kunxia Yu & Chong-Yu Xu, 2020. "On the Applicability of the Expected Waiting Time Method in Nonstationary Flood Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2585-2601, June.
    8. Dong-dong Zhang & Deng-hua Yan & Yi-Cheng Wang & Fan Lu & Shao-hua Liu, 2015. "GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1037-1053, June.
    9. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    10. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    11. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    12. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    13. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    14. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    15. Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 235-256.
    16. I. Gijbels & I. Prosdocimi & G. Claeskens, 2010. "Nonparametric estimation of mean and dispersion functions in extended generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 580-608, November.
    17. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.
    18. Groll, Andreas & Hambuckers, Julien & Kneib, Thomas & Umlauf, Nikolaus, 2019. "LASSO-type penalization in the framework of generalized additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 59-73.
    19. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    20. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:15:p:5533-5550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.