IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i12p4319-4335.html
   My bibliography  Save this article

Multi-Temporal Analysis of Mean Annual and Seasonal Stream Flow Trends, Including Periodicity and Multiple Non-Linear Regression

Author

Listed:
  • Milan Stojković
  • Aleksandra Ilić
  • Stevan Prohaska
  • Jasna Plavšić

Abstract

Global warming affects the hydrological cycle and the long-term water budget of river basins. Flow variations have been noticed in the Danube River Basin, especially in its south-western parts where a downward trend in mean annual flows has been prevalent in the past several decades. Time series of mean annual and seasonal flows of the Sava River at hydrological stations Sremska Mitrovica and Zagreb are analysed in this paper. The trend is assessed with the Mann-Kendall test including the effect of serial correlation. Additionally, the trends are assessed in the multi-temporal framework. It is concluded that the long-term periodicity of annual flows has a considerable impact on the time series trend. Long-term component with cycles of 40 years in mean annual flows are detected by the time series analysis in frequency domain. Regression analysis showed a significant correlation between mean annual flows of the Sava River and annual precipitation, mean annual atmospheric pressure and air temperatures at meteorological station Ljubljana, as well as with the North Atlantic Oscillation (NAO) Index. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Milan Stojković & Aleksandra Ilić & Stevan Prohaska & Jasna Plavšić, 2014. "Multi-Temporal Analysis of Mean Annual and Seasonal Stream Flow Trends, Including Periodicity and Multiple Non-Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4319-4335, September.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:12:p:4319-4335
    DOI: 10.1007/s11269-014-0753-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0753-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0753-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    2. Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl & F. Hugo Lambert & Nathan P. Gillett & Susan Solomon & Peter A. Stott & Toru Nozawa, 2007. "Detection of human influence on twentieth-century precipitation trends," Nature, Nature, vol. 448(7152), pages 461-465, July.
    3. Sanjay Jain & Archana Sarkar & Vaibhav Garg, 2008. "Impact of Declining Trend of Flow on Harike Wetland, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 409-421, April.
    4. Sheng Yue & ChunYuan Wang, 2004. "The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 201-218, June.
    5. Jorge Moraes & Giampaolo Pellegrino & Maria Ballester & Luiz Martinelli & Reynaldo Victoria & Alex Krusche, 1998. "Trends in Hydrological Parameters of a Southern Brazilian Watershed and its Relation to Human Induced Changes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(4), pages 295-311, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauricio Marrone, 2020. "Application of entity linking to identify research fronts and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 357-379, January.
    2. Milan Stojković & Srđan Kostić & Stevan Prohaska & Jasna Plavšić & Vesna Tripković, 2017. "A New Approach for Trend Assessment of Annual Streamflows: a Case Study of Hydropower Plants in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1089-1103, March.
    3. Jianzhu Li & Guoqing Li & Shuhan Zhou & Fulong Chen, 2016. "Quantifying the Effects of Land Surface Change on Annual Runoff Considering Precipitation Variability by SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1071-1084, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    2. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    3. ChaoJun Gu & Yongqing Zhu & Renhua Li & He Yao & Xingmin Mu, 2021. "Effects of different soil and water conservation measures on hydrological extremes and flood processes in the Yanhe River, Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 545-566, October.
    4. Mohammed Achite & Tommaso Caloiero & Abderrezak Kamel Toubal, 2022. "Rainfall and Runoff Trend Analysis in the Wadi Mina Basin (Northern Algeria) Using Non-Parametric Tests and the ITA Method," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    5. Mansoor Ahmed & Ghulam Hussain Dars & Suhail Ahmed & Nir Y. Krakauer, 2023. "Analyzing drought trends over Sindh Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 643-661, October.
    6. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    7. Qianwen Li & Tiantian Jin & Jing Yang & Qingxu Zhao & Qidong Peng & Junqiang Lin & Di Zhang, 2023. "Wetland Evolution and Driving Force Analysis in the Qingtongxia Reservoir Area," Land, MDPI, vol. 12(4), pages 1-21, April.
    8. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    9. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    10. Kelly Sanders & Carey King & Ashlynn Stillwell & Michael Webber, 2013. "Clean energy and water: assessment of Mexico for improved water services and renewable energy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(5), pages 1303-1321, October.
    11. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    12. Wan-Jiun Chen, 2017. "Is the Green Solow Model Valid for $$\hbox {CO}_{2}$$ CO 2 Emissions in the European Union?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 23-45, May.
    13. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    14. Myoung-Jin Um & Jun-Haeng Heo & Momcilo Markus & Donald J. Wuebbles, 2018. "Performance Evaluation of four Statistical Tests for Trend and Non-stationarity and Assessment of Observed and Projected Annual Maximum Precipitation Series in Major United States Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 913-933, February.
    15. Milan Stojković & Srđan Kostić & Stevan Prohaska & Jasna Plavšić & Vesna Tripković, 2017. "A New Approach for Trend Assessment of Annual Streamflows: a Case Study of Hydropower Plants in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1089-1103, March.
    16. Anas Mahmood Al-Juboori, 2019. "Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3257-3270, July.
    17. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    18. Farahani Mohd Saimi & Firdaus Mohamad Hamzah & Mohd Ekhwan Toriman & Othman Jaafar & Hazrina Tajudin, 2020. "Trend and Linearity Analysis of Meteorological Parameters in Peninsular Malaysia," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    19. Zhe Yuan & Denghua Yan & Zhiyong Yang & Jijun Xu & Junjun Huo & Yanlai Zhou & Cheng Zhang, 2018. "Attribution assessment and projection of natural runoff change in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 27-49, January.
    20. Yiting Shao & Xiaohui Zhai & Xingmin Mu & Sen Zheng & Dandan Shen & Jinglin Qian, 2024. "An Attribution Analysis of Runoff Alterations in the Danjiang River Watershed for Sustainable Water Resource Management by Different Methods," Sustainability, MDPI, vol. 16(17), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:12:p:4319-4335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.