IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i14p4715-4730.html
   My bibliography  Save this article

The Role of Green Roofs as a Source/sink of Pollutants in Storm Water Outflows

Author

Listed:
  • I. Gnecco
  • A. Palla
  • L.G. Lanza
  • P. Barbera

Abstract

Green roofs are increasingly used as sustainable urban drainage systems due to their retention and detention capacity; however, the impact of green roofs in term of water quality is still a debated issue among researchers. A monitoring programme was carried out at the University of Genoa on a full-scale experimental site to assess the quality of storm water outflows. As for rainfall, the bulk deposition (dry and wet fractions) is collected to evaluate the role of the overall atmospheric deposition in altering storm water quality. The pollutant load observed in the green roof outflow is limited; concentration values for solids and metals are lower than those generally observed in storm water runoff from impervious surfaces. Suspended solids and Chemical Oxygen Demand (COD) are below respectively 10 and 20 mg/l, on average; as for heavy metals, copper and zinc are equal to 30 μg/l on average, while iron is equal to 120 μg/l. The Event Mean Concentration (EMC) statistics of the pollutant loads associated with the rainfall and outflow have been compared and discussed. The observed green roof behaviour as a sink/source of pollutants with respect to the atmospheric deposition is also investigated based on both concentration and mass. Results demonstrate that: green roof behaves as a source with respect to solids, COD and potassium while zinc and mainly copper are retained within the green roof stratigraphy. The resulting mass delivery behaviour reveals that no significant first flush occurs for pollutant constituents irrespective of the hydrologic characteristics and pollutant sources. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • I. Gnecco & A. Palla & L.G. Lanza & P. Barbera, 2013. "The Role of Green Roofs as a Source/sink of Pollutants in Storm Water Outflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4715-4730, November.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:14:p:4715-4730
    DOI: 10.1007/s11269-013-0414-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0414-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0414-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alar Teemusk & Ülo Mander, 2011. "The Influence of Green Roofs on Runoff Water Quality: A Case Study from Estonia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3699-3713, November.
    2. C. Vialle & C. Sablayrolles & M. Lovera & M.-C. Huau & S. Jacob & M. Montrejaud-Vignoles, 2012. "Water Quality Monitoring and Hydraulic Evaluation of a Household Roof Runoff Harvesting System in France," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2233-2241, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Raimondi & G. Becciu, 2021. "Performance of Green Roofs for Rainwater Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 99-111, January.
    2. Grzegorz Pęczkowski & Katarzyna Szawernoga & Tomasz Kowalczyk & Wojciech Orzepowski & Ryszard Pokładek, 2020. "Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    3. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    4. Yiping Guo & Shouhong Zhang & Shuguang Liu, 2014. "Runoff Reduction Capabilities and Irrigation Requirements of Green Roofs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1363-1378, March.
    5. Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    6. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhang & Yan Zhu & Xuejun Wang, 2014. "A Modeling Method to Evaluate the Management Strategy of Urban Storm Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 541-552, January.
    2. Yiping Guo & Shouhong Zhang & Shuguang Liu, 2014. "Runoff Reduction Capabilities and Irrigation Requirements of Green Roofs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1363-1378, March.
    3. Agnieszka Karczmarczyk & Anna Baryła & Paweł Kożuchowski, 2017. "Design and Development of Low P-Emission Substrate for the Protection of Urban Water Bodies Collecting Green Roof Runoff," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    4. Xingqi Zhang & Maochuan Hu & Gang Chen & Youpeng Xu, 2012. "Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3757-3766, October.
    5. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    6. Musa Akther & Jianxun He & Angus Chu & Jian Huang & Bert Van Duin, 2018. "A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones," Sustainability, MDPI, vol. 10(8), pages 1-28, August.
    7. Deepak Singh Bisht & Chandranath Chatterjee & Shivani Kalakoti & Pawan Upadhyay & Manaswinee Sahoo & Ambarnil Panda, 2016. "Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 749-776, November.
    8. Katarzyna Wartalska & Martyna Grzegorzek & Maciej Bełcik & Marcin Wdowikowski & Agnieszka Kolanek & Elżbieta Niemierka & Piotr Jadwiszczak & Bartosz Kaźmierczak, 2024. "The Potential of RainWater Harvesting Systems in Europe – Current State of Art and Future Perspectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4657-4683, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:14:p:4715-4730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.