IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i9p2583-2604.html
   My bibliography  Save this article

A Hydrologic Model of Kemptville Basin—Calibration and Extended Validation

Author

Listed:
  • Ferdous Ahmed

Abstract

An integrated hydrologic/hydraulic model of the Kemptville Creek basin has been built using the Mike11 modeling system of the Danish Hydraulic Institute and available GIS-based watershed data. This watershed system is complex, comprising of channels, local drainage areas, lateral inflows, wetlands, and a regulated dam. The model was calibrated using measured streamflow data for five years and then validated for another five years. A wide range of methods—both qualitative and quantitative—were used to evaluate the model performance. It was found that the model can simulate high flows with a high degree of accuracy, and the low flows less satisfactorily. Additional (split-sample) validation tests were conducted for another two five-year periods, which revealed that the model is capable of performing equally well for time periods beyond those used for calibration and validation. This model is now being used for various watershed management purposes, including synthetic hydrograph generation, flood forecasting, design flood estimation, wetland function analysis, etc. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Ferdous Ahmed, 2012. "A Hydrologic Model of Kemptville Basin—Calibration and Extended Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2583-2604, July.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:9:p:2583-2604
    DOI: 10.1007/s11269-012-0034-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0034-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0034-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alphonce Guzha & T. Hardy, 2010. "Application of the Distributed Hydrological Model, TOPNET, to the Big Darby Creek Watershed, Ohio, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 979-1003, March.
    2. Peng Shi & Chao Chen & Ragahavan Srinivasan & Xuesong Zhang & Tao Cai & Xiuqin Fang & Simin Qu & Xi Chen & Qiongfang Li, 2011. "Evaluating the SWAT Model for Hydrological Modeling in the Xixian Watershed and a Comparison with the XAJ Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2595-2612, August.
    3. Ferdous Ahmed, 2010. "Numerical modeling of the Rideau Valley Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(1), pages 63-84, October.
    4. Robyn Johnston & Matti Kummu, 2012. "Water Resource Models in the Mekong Basin: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 429-455, January.
    5. Elias Bekele & H. Knapp, 2010. "Watershed Modeling to Assessing Impacts of Potential Climate Change on Water Supply Availability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3299-3320, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Yin & Chesheng Zhan & Wen Ye, 2016. "An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5263-5279, November.
    2. Tanja Vonach & Manfred Kleidorfer & Wolfgang Rauch & Franz Tscheikner-Gratl, 2019. "An Insight to the Cornucopia of Possibilities in Calibration Data Collection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1629-1645, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boini Narsimlu & Ashvin Gosain & Baghu Chahar, 2013. "Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3647-3662, August.
    2. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    3. Lu Zhuo & Dawei Han & Qiang Dai & Tanvir Islam & Prashant Srivastava, 2015. "Appraisal of NLDAS-2 Multi-Model Simulated Soil Moistures for Hydrological Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3503-3517, August.
    4. Yuichiro Yoshida & Han Soo Lee & Bui Huy Trung & Hoang-Dung Tran & Mahrjan Keshlav Lall & Kifayatullah Kakar & Tran Dang Xuan, 2020. "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    5. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    6. Menghao Wang & Shanhu Jiang & Liliang Ren & Chong-Yu Xu & Linyong Wei & Hao Cui & Fei Yuan & Yi Liu & Xiaoli Yang, 2022. "The Development of a Nonstationary Standardised Streamflow Index Using Climate and Reservoir Indices as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1377-1392, March.
    7. Ali Suliman & Milad Jajarmizadeh & Sobri Harun & Intan Mat Darus, 2015. "Comparison of Semi-Distributed, GIS-Based Hydrological Models for the Prediction of Streamflow in a Large Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3095-3110, July.
    8. Phong Nguyen Thanh & Thinh Le Van & Tuan Tran Minh & Tuyen Huynh Ngoc & Worapong Lohpaisankrit & Quoc Bao Pham & Alexandre S. Gagnon & Proloy Deb & Nhat Truong Pham & Duong Tran Anh & Vuong Nguyen Din, 2023. "Adapting to Climate-Change-Induced Drought Stress to Improve Water Management in Southeast Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-27, June.
    9. Peng Shi & Xinxin Ma & Yuanbing Hou & Qiongfang Li & Zhicai Zhang & Simin Qu & Chao Chen & Tao Cai & Xiuqin Fang, 2013. "Effects of Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1263-1278, March.
    10. Thanh Le & Deg-Hyo Bae, 2013. "Evaluating the Utility of IPCC AR4 GCMs for Hydrological Application in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3227-3246, July.
    11. Jiao Liu & Tie Liu & Anming Bao & Philippe Maeyer & Xianwei Feng & Scott N. Miller & Xi Chen, 2016. "Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1757-1770, March.
    12. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    13. Rong Zhang & Celso Santos & Madalena Moreira & Paula Freire & João Corte-Real, 2013. "Automatic Calibration of the SHETRAN Hydrological Modelling System Using MSCE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4053-4068, September.
    14. Mohsen Tavakoli & Florimond De Smedt & Thomas Vansteenkiste & Patrick Willems, 2014. "Impact of climate change and urban development on extreme flows in the Grote Nete watershed, Belgium," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2127-2142, April.
    15. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    16. Ferdous Ahmed, 2010. "A hydrodynamic model for the Lower Rideau River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(1), pages 85-94, October.
    17. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    18. Brouziyne, Youssef & Abouabdillah, Aziz & Hirich, Abdelaziz & Bouabid, Rachid & Zaaboul, Rashyd & Benaabidate, Lahcen, 2018. "Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios," Agricultural Systems, Elsevier, vol. 162(C), pages 154-163.
    19. Jiao Liu & Tie Liu & Anming Bao & Philippe Maeyer & Xianwei Feng & Scott Miller & Xi Chen, 2016. "Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1757-1770, March.
    20. B. Fiseha & S. Setegn & A. Melesse & E. Volpi & A. Fiori, 2014. "Impact of Climate Change on the Hydrology of Upper Tiber River Basin Using Bias Corrected Regional Climate Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1327-1343, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:9:p:2583-2604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.