IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i5p1005-1028.html
   My bibliography  Save this article

Evaluation of Three Numerical Weather Prediction Models for Short and Medium Range Agrohydrological Applications

Author

Listed:
  • Yonas Ghile
  • Roland Schulze

Abstract

The skill and accuracy of the quantitative precipitation forecasts by CCAM, UM and NCEP-MRF models are verified using various statistical scores at the Mgeni catchment in KwaZulu-Natal, South Africa. The CCAM model is capable of identifying a rainfall event, but with a tendency of under-estimating its magnitude. The UM model is capable of distinguishing rainy days from non-rainy days, but with a significant over-estimation of rainfall amount. There is no significant difference between the 1 and 2 day lead time UM forecasts. Statistical comparisons show that there is an acceptable skill in the CCAM forecasts, but the forecast skill of the UM model is low and unreliable. The role of the initial hydrological conditions in affecting the accuracy of CCAM and UM streamflows forecasts was significant. The results show that the under-estimation of the CCAM forecasts was reduced from −44% to −10%, while the over-estimation in the UM forecasts was reduced from 291% to only 59% when the ACRU agrohydrological model was initialised with observed rainfalls up to the previous day at each forecast run within the study period. The combined use of the CCAM and UM models by a “weighted averaging” had little effect in improving the skill as it is overshadowed more by the over-estimation of the UM forecasts than the under-estimation of the CCAM forecasts. Results obtained for a continuous period of 92 days showed that the NCEP-MRF rainfall forecasts were significantly over-predicted. The NCEP-MRF rainfall forecast is found to be totally unskillful, although the skill was seen to slightly increase with decreasing lead time. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Yonas Ghile & Roland Schulze, 2010. "Evaluation of Three Numerical Weather Prediction Models for Short and Medium Range Agrohydrological Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 1005-1028, March.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:5:p:1005-1028
    DOI: 10.1007/s11269-009-9483-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9483-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9483-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Aqil & Ichiro Kita & Akira Yano & Soichi Nishiyama, 2007. "Neural Networks for Real Time Catchment Flow Modeling and Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1781-1796, October.
    2. Si-Hui Dong & Hui-Cheng Zhou & Hai-Jun Xu, 2004. "A Forecast Model of Hydrologic Single Element Medium and Long-Period Based on Rough Set Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 483-495, October.
    3. Juran Ahmed & Arup Sarma, 2007. "Artificial neural network model for synthetic streamflow generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 1015-1029, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dushmanta Dutta & Wendy Welsh & Jai Vaze & Shaun Kim & David Nicholls, 2012. "A Comparative Evaluation of Short-Term Streamflow Forecasting Using Time Series Analysis and Rainfall-Runoff Models in eWater Source," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4397-4415, December.
    2. Jie Chen & François Brissette, 2015. "Combining Stochastic Weather Generation and Ensemble Weather Forecasts for Short-Term Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3329-3342, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    2. Yi-min Wang & Jian-xia Chang & Qiang Huang, 2010. "Simulation with RBF Neural Network Model for Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2597-2610, September.
    3. Anas Mahmood Al-Juboori, 2019. "Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3257-3270, July.
    4. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    5. Alexandre Evsukoff & Beatriz Lima & Nelson Ebecken, 2011. "Long-Term Runoff Modeling Using Rainfall Forecasts with Application to the Iguaçu River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 963-985, February.
    6. M. G. Erechtchoukova & P. A. Khaiter & S. Saffarpour, 2016. "Short-Term Predictions of Hydrological Events on an Urbanized Watershed Using Supervised Classification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4329-4343, September.
    7. Hakan Tongal & Martijn J. Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    8. Roy Setiawan & Reza Daneshfar & Omid Rezvanjou & Siavash Ashoori & Maryam Naseri, 2021. "Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17606-17627, December.
    9. Zaher Mundher Yaseen & Minglei Fu & Chen Wang & Wan Hanna Melini Wan Mohtar & Ravinesh C. Deo & Ahmed El-shafie, 2018. "Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1883-1899, March.
    10. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    11. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    12. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.
    13. Maya Rajnarayan Ray & Arup Kumar Sarma, 2016. "Influence of Time Discretization and Input Parameter on the ANN Based Synthetic Streamflow Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4695-4711, October.
    14. Yong-Ying Zhu & Hui-Cheng Zhou, 2009. "Rough Fuzzy Inference Model and its Application in Multi-factor Medium and Long-term Hydrological Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 493-507, February.
    15. Rajib Bhattacharjya & Sandeep Chaurasia, 2013. "Geomorphology Based Semi-Distributed Approach for Modelling Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 567-579, January.
    16. Maryam Zavareh & Viviana Maggioni, 2018. "Application of Rough Set Theory to Water Quality Analysis: A Case Study," Data, MDPI, vol. 3(4), pages 1-15, November.
    17. Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
    18. Hakan Tongal & Martijn Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    19. Maria Manuela Portela & Artur Tiago Silva, 2016. "Disaggregation Modelling of Annual Flows into Daily Streamflows Using a New Approach of the Method of Fragments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5589-5607, December.
    20. Nariman Valizadeh & Majid Mirzaei & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Nuruol Syuhadaa Mohd & Aini Hussain & Ahmed El-Shafie, 2017. "Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1377-1392, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:5:p:1005-1028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.