IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i15p4397-4415.html
   My bibliography  Save this article

A Comparative Evaluation of Short-Term Streamflow Forecasting Using Time Series Analysis and Rainfall-Runoff Models in eWater Source

Author

Listed:
  • Dushmanta Dutta
  • Wendy Welsh
  • Jai Vaze
  • Shaun Kim
  • David Nicholls

Abstract

Over the past few decades, many numerical streamflow prediction techniques using observed time series (TS) have been developed and widely used in water resources planning and management. Recent advances in quantitative rainfall forecasting by numerical weather prediction (NWP) models have made it possible to produce improved streamflow forecasts using continuous rainfall-runoff (RR) models. In the absence of a suitable integrated system of NWP, RR and river system models, river operators in Australia mostly use spreadsheet-based tools to forecast streamflow using gauged records. The eWater Cooperative Research Centre of Australia has recently developed a new generation software package called eWater Source, which allows a seamless integration of continuous RR and river system models for operational and planning purposes. This paper presents the outcomes of a study that was carried out using Source for a comparative evaluation of streamflow forecasting by several well-known TS based linear techniques and RR models in two selected sub-basins in the upper Murray river system of the Murray-Darling Basin in Australia. The results were compared with the actual forecasts made by the Murray River operators and the observed data. The results show that while streamflow forecasts by the river operators were reasonably accurate up to day 3 and traditional TS based approaches were reasonably accurate up to 2 days. Well calibrated RR models can provide better forecasts for longer periods when using high quality quantitative precipitation forecasts. The river operators tended to underestimate large magnitude flows. Copyright Springer Science+Business Media Dordrecht 2012

Suggested Citation

  • Dushmanta Dutta & Wendy Welsh & Jai Vaze & Shaun Kim & David Nicholls, 2012. "A Comparative Evaluation of Short-Term Streamflow Forecasting Using Time Series Analysis and Rainfall-Runoff Models in eWater Source," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4397-4415, December.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:15:p:4397-4415
    DOI: 10.1007/s11269-012-0151-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0151-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0151-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yonas Ghile & Roland Schulze, 2010. "Evaluation of Three Numerical Weather Prediction Models for Short and Medium Range Agrohydrological Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 1005-1028, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hakan Tongal & Martijn Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    2. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    3. Wei Zhang & Yan Zhu & Xuejun Wang, 2014. "A Modeling Method to Evaluate the Management Strategy of Urban Storm Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 541-552, January.
    4. Jie Chen & François Brissette, 2015. "Combining Stochastic Weather Generation and Ensemble Weather Forecasts for Short-Term Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3329-3342, July.
    5. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    6. David Robertson & Q. Wang, 2013. "Seasonal Forecasts of Unregulated Inflows into the Murray River, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2747-2769, June.
    7. Zhongda, Tian & Shujiang, Li & Yanhong, Wang & Yi, Sha, 2017. "A prediction method based on wavelet transform and multiple models fusion for chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 158-172.
    8. Mahdi Soleimani Motlagh & Hoda Ghasemieh & Ali Talebi & Khodayar Abdollahi, 2017. "Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 109-125, January.
    9. J. Teng & J. Vaze & D. Dutta & S. Marvanek, 2015. "Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2619-2636, June.
    10. Hakan Tongal & Martijn J. Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    11. Mostafa Dastorani & Mohammad Mirzavand & Mohammad Taghi Dastorani & Seyyed Javad Sadatinejad, 2016. "Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1811-1827, April.
    12. Yan-Fang Sang, 2013. "Improved Wavelet Modeling Framework for Hydrologic Time Series Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2807-2821, June.
    13. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Chen & François Brissette, 2015. "Combining Stochastic Weather Generation and Ensemble Weather Forecasts for Short-Term Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3329-3342, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:15:p:4397-4415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.