Influence of Time Discretization and Input Parameter on the ANN Based Synthetic Streamflow Generation
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-016-1448-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004. "River Flow Forecasting using Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
- Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
- Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
- Juran Ahmed & Arup Sarma, 2007. "Artificial neural network model for synthetic streamflow generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 1015-1029, June.
- V. Chandramouli & Paresh Deka, 2005. "Neural Network Based Decision Support Model for Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 447-464, August.
- Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dipsikha Devi & Anupal Baruah & Arup Kumar Sarma, 2022. "Characterization of dam-impacted flood hydrograph and its degree of severity as a potential hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1989-2011, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Murat Cobaner & Tefaruk Haktanir & Ozgur Kisi, 2008. "Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 757-774, June.
- Yi-min Wang & Jian-xia Chang & Qiang Huang, 2010. "Simulation with RBF Neural Network Model for Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2597-2610, September.
- Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
- Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
- Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
- Mayank Suman & Rajib Maity, 2019. "Assessment of Streamflow Variability with Upgraded HydroClimatic Conceptual Streamflow Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1367-1382, March.
- Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
- Huantian Xie & Dingfang Li & Lihua Xiong, 2016. "Exploring the Regional Variance using ARMA-GARCH Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3507-3518, August.
- Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
- Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
- Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
- Yonas Ghile & Roland Schulze, 2010. "Evaluation of Three Numerical Weather Prediction Models for Short and Medium Range Agrohydrological Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 1005-1028, March.
- Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
- Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
- Anas Mahmood Al-Juboori, 2019. "Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3257-3270, July.
- G. Saharidis & I. Androulakis & M. Ierapetritou, 2011. "Model building using bi-level optimization," Journal of Global Optimization, Springer, vol. 49(1), pages 49-67, January.
- Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
- Ping-Feng Pai & Fong-Chuan Lee, 2010. "A Rough Set Based Model in Water Quality Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2405-2418, September.
- Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
- L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
More about this item
Keywords
Synthetic streamflow; Artificial neural network; Input parameters; Time step discretization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1448-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.