IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i2d10.1007_s11069-021-04882-8.html
   My bibliography  Save this article

Comparative study of flash flood in ungauged watershed with special emphasizing on rough set theory for handling the missing hydrological values

Author

Listed:
  • Muhammad Waseem Boota

    (Zhengzhou University
    Zhengzhou University
    University of Lahore, Lahore Campus)

  • Chaode Yan

    (Zhengzhou University
    Zhengzhou University)

  • Tanveer Abbas

    (Mott MacDonald MM Pakistan (Pvt.) Ltd)

  • Ziwei Li

    (Zhengzhou University
    Zhengzhou University)

  • Ming Dou

    (Zhengzhou University)

  • Ayesha Yousaf

    (University of Engineering and Technology Lahore)

Abstract

Prediction of the flash floods in ungauged or poorly gauging watershed is one of the challenging tasks in the field of hydrology and needs implication of advanced techniques to obtain the reliable results. In this study, an innovative artificial intelligence-based rough set theory (RST) was used to retrieve missing hydro-meteorological data which were utilized to build a forecast model to predict the flood event in an ungauged watershed in Pakistan (Thor Nullah). The RST-based forecast model was calibrated for 1986 to 2004 and tested for 2008 to 2016. The result showed that 9 out of 10 forecasting objects were predicted precisely. Basin data model technique along with rainfall–runoff (R.F-R.O) model and RST forecasting model was used to estimate the peak discharge of flood event occurred in 2015. The modeled peak discharge (1152 m3 s−1) was compared with the field observation-based highest flood marks (HFMs—1189 m3 s−1), which showed slight discrimination due to indeterminate model calibration sparse rain gauge density. Moreover, flood inundation map showed high flood risk to the 80% localities with a flood depth of 0.1–1.67 m in locality. Overall, this study suggested a reliable use of RST for data mining and flood modeling; however, the absence of adequate flow data at study site limits the reliability of R.F-R.O model calibration. Moreover, based on the array of flood hazard simulation studies, provision of channelization and cross-drainage works is suggested to protect the catchment against floods and debris brought down through catchment.

Suggested Citation

  • Muhammad Waseem Boota & Chaode Yan & Tanveer Abbas & Ziwei Li & Ming Dou & Ayesha Yousaf, 2021. "Comparative study of flash flood in ungauged watershed with special emphasizing on rough set theory for handling the missing hydrological values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1387-1405, November.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:2:d:10.1007_s11069-021-04882-8
    DOI: 10.1007/s11069-021-04882-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04882-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04882-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Si-Hui Dong & Hui-Cheng Zhou & Hai-Jun Xu, 2004. "A Forecast Model of Hydrologic Single Element Medium and Long-Period Based on Rough Set Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 483-495, October.
    2. Wenlin Yuan & Meiqi Liu & Fang Wan, 2019. "Calculation of Critical Rainfall for Small-Watershed Flash Floods Based on the HEC-HMS Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2555-2575, May.
    3. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    2. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    3. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    4. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    5. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    6. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    7. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    8. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    9. Cailin Li & Na Sun & Yihui Lu & Baoyun Guo & Yue Wang & Xiaokai Sun & Yukai Yao, 2022. "Review on Urban Flood Risk Assessment," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    10. Kerim Koc & Zeynep Işık, 2020. "A multi-agent-based model for sustainable governance of urban flood risk mitigation measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1079-1110, October.
    11. Yong-Ying Zhu & Hui-Cheng Zhou, 2009. "Rough Fuzzy Inference Model and its Application in Multi-factor Medium and Long-term Hydrological Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 493-507, February.
    12. Chang-Yu Hong & Eun-Sung Chung, 2016. "Temporal Variations of Citizens’ Demands on Flood Damage Mitigation, Streamflow Quantity and Quality in the Korean Urban Watershed," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    13. Maryam Zavareh & Viviana Maggioni, 2018. "Application of Rough Set Theory to Water Quality Analysis: A Case Study," Data, MDPI, vol. 3(4), pages 1-15, November.
    14. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    15. Vladimír Baláž & Dušana Dokupilová & Richard Filčák, 2021. "Participatory multi-criteria methods for adaptation to climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(4), pages 1-22, April.
    16. Mo Wang & Xiaoping Fu & Dongqing Zhang & Furong Chen & Jin Su & Shiqi Zhou & Jianjun Li & Yongming Zhong & Soon Keat Tan, 2023. "Urban Flooding Risk Assessment in the Rural-Urban Fringe Based on a Bayesian Classifier," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    17. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.
    18. Hassan Darabi & Hadis Kordani & Ardeshir JamshidAbadi, 2022. "Flood anticipation, reality, and uncertainty, the 2019 flood in Khuzestan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 365-381, August.
    19. Hariklia D. Skilodimou & George D. Bathrellos & Dimitrios E. Alexakis, 2021. "Flood Hazard Assessment Mapping in Burned and Urban Areas," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    20. Liming Zhao & Ling Li & Yujie Wu, 2017. "Research on the Coupling Coordination of a Sea–Land System Based on an Integrated Approach and New Evaluation Index System: A Case Study in Hainan Province, China," Sustainability, MDPI, vol. 9(5), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:2:d:10.1007_s11069-021-04882-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.