IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i3p493-507.html
   My bibliography  Save this article

Rough Fuzzy Inference Model and its Application in Multi-factor Medium and Long-term Hydrological Forecast

Author

Listed:
  • Yong-Ying Zhu
  • Hui-Cheng Zhou

Abstract

This paper targets efforts to integrate rough set theory and the fuzzy inference technique into the multi-element medium and long-term hydrological forecast. Rough set theory is used to predigest the data and deal with the redundant inconsistent initial information table. Accordingly, the factors are reduced with the attribute significance concept. The minimal solution which is as fuzzy inference forecast pattern rule set in the model is achieved according to the principle of maximal attribute significance and combination significance as well as rules frequency. The model is applied to forecast annual runoff of Dahuofang Reservoir in China. The results indicate that the forecast precision is improved with rough set and the model can effectively reflect the non-linear relations between the runoff and factors and provide an effective and adaptable method to solve forecast problems related to complex factors selection and minimal inference rule set generation. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Yong-Ying Zhu & Hui-Cheng Zhou, 2009. "Rough Fuzzy Inference Model and its Application in Multi-factor Medium and Long-term Hydrological Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 493-507, February.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:3:p:493-507
    DOI: 10.1007/s11269-008-9285-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9285-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9285-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004. "River Flow Forecasting using Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
    2. Si-Hui Dong & Hui-Cheng Zhou & Hai-Jun Xu, 2004. "A Forecast Model of Hydrologic Single Element Medium and Long-Period Based on Rough Set Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 483-495, October.
    3. Slobodan Simonovic & Lanhai Li, 2004. "Sensitivity of the Red River Basin Flood Protection System to Climate Variability and Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 89-110, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangita Dey & Arabin Kumar Dey & Rajesh Kumar Mall, 2021. "Modeling Long-term Groundwater Levels By Exploring Deep Bidirectional Long Short-Term Memory using Hydro-climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3395-3410, August.
    2. Ping-Feng Pai & Lan-Lin Li & Wei-Zhan Hung & Kuo-Ping Lin, 2014. "Using ADABOOST and Rough Set Theory for Predicting Debris Flow Disaster," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1143-1155, March.
    3. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    4. Gokmen Tayfur & Vijay Singh, 2011. "Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1253-1267, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    2. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    3. Jew Das & Nanduri V. Umamahesh, 2016. "Downscaling Monsoon Rainfall over River Godavari Basin under Different Climate-Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5575-5587, December.
    4. Yonas Ghile & Roland Schulze, 2010. "Evaluation of Three Numerical Weather Prediction Models for Short and Medium Range Agrohydrological Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 1005-1028, March.
    5. Kaveh Madani & Miguel Mariño, 2009. "System Dynamics Analysis for Managing Iran’s Zayandeh-Rud River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2163-2187, September.
    6. Marie Minville & François Brissette & Stéphane Krau & Robert Leconte, 2009. "Adaptation to Climate Change in the Management of a Canadian Water-Resources System Exploited for Hydropower," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2965-2986, November.
    7. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    8. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    9. Xiao-Bo Luan & Pu-Te Wu & Shi-Kun Sun & Xiao-Lei Li & Yu-Bao Wang & Xue-Rui Gao, 2018. "Impact of Land Use Change on Hydrologic Processes in a Large Plain Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3203-3217, July.
    10. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    11. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    12. S. Rehana & P. Mujumdar, 2014. "Basin Scale Water Resources Systems Modeling Under Cascading Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3127-3142, August.
    13. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    14. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    15. Lanhai Li & Honggang Xu & Xi Chen & S. Simonovic, 2010. "Streamflow Forecast and Reservoir Operation Performance Assessment Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 83-104, January.
    16. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    17. Shivshanker Patel & Parthasarathy Ramachandran, 2015. "A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 589-602, January.
    18. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    19. Tingqi Wang & Yuting Guo & Mazina Svetlana Evgenievna & Zhenjiang Wu, 2024. "Application of a Multi-Model Fusion Forecasting Approach in Runoff Prediction: A Case Study of the Yangtze River Source Region," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
    20. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:3:p:493-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.