IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8620-d614770.html
   My bibliography  Save this article

Assessment of Spatial and Vertical Variability of Water Quality: Case Study of a Polymictic Polish Lake

Author

Listed:
  • Beata Ferencz

    (Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, 13 Akademicka St, 20-950 Lublin, Poland)

  • Jarosław Dawidek

    (Department of Hydrology and Climatology, Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, Kraśnicka 2cd, 20-718 Lublin, Poland)

Abstract

UE regulations focus on methods of water quality monitoring and their use in rational management practices. This study investigated horizontal and vertical variations of electrical conductivity (EC), pH, dissolved oxygen (DO), and chlorophyll a (Chl-a) in a shallow polymictic lake. Monitoring of short-term variability of physical and chemical lake water parameters is a critical component in lake management, as it influences aquatic life. Based on the field research, maps of spatial distribution of the parameters were drawn. Using two methods: (1) a classical approach to water column measurements, from the top to the bottom (TB), in which the reference point is always a surface layer (SL), and (2) a newly introduced method of lake water quality monitoring based on a nearest neighbor (NN) approach; a comparison of higher and lower layers of the water column. By subtracting partial maps of spatial variability for different depths, final raster images were obtained. The NN method is rather absent in the limnology literature worldwide. Vertical and horizontal variability of the tested parameters in the polymictic, shallow Lake Bikcze (Poland) was presented in the results. In the presented paper, the commonly used TB method emphasized the role of the surface layer in shaping the variability of physicochemical parameters of lake waters. It shows a general trend of parameters’ changes from the top, to the bottom. The newly presented NN method, which has a major advantage in its simplicity and objectivity, emphasized structural differentiation within the range of variability. The nearest neighbor method was more accurate in showing the actual structure of fluctuation of parameters with higher fluctuation in the water column. Its advantage is a detailed recognition of the vertical variability of selected parameters in the water column. The method may be used regardless of the lake depth, its location in climatic zone, and/or region.

Suggested Citation

  • Beata Ferencz & Jarosław Dawidek, 2021. "Assessment of Spatial and Vertical Variability of Water Quality: Case Study of a Polymictic Polish Lake," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8620-:d:614770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Kunlun & Wang, Xu & Li, Dan & Li, Zhaohua, 2015. "Driving force of the morphological change of the urban lake ecosystem: A case study of Wuhan, 1990–2013," Ecological Modelling, Elsevier, vol. 318(C), pages 204-209.
    2. Humberto Silva-Hidalgo & Ignacio Martín-Domínguez & María Alarcón-Herrera & Alfredo Granados-Olivas, 2009. "Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 721-730, March.
    3. Xueling Yao & Bojie Fu & Yihe Lü & Feixiang Sun & Shuai Wang & Min Liu, 2013. "Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-13, January.
    4. Wen Liu & Long Ma & Jilili Abuduwaili, 2020. "Anthropogenic Influences on Environmental Changes of Lake Bosten, the Largest Inland Freshwater Lake in China," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    2. Mohamed A. E. AbdelRahman & Yasser M. Zakarya & Mohamed M. Metwaly & Georgios Koubouris, 2020. "Deciphering Soil Spatial Variability through Geostatistics and Interpolation Techniques," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    3. Mulenga Kalumba & Edwin Nyirenda & Imasiku Nyambe & Stefaan Dondeyne & Jos Van Orshoven, 2022. "Machine Learning Techniques for Estimating Hydraulic Properties of the Topsoil across the Zambezi River Basin," Land, MDPI, vol. 11(4), pages 1-22, April.
    4. Gema Carmona & Consuelo Varela-Ortega & John Bromley, 2011. "The Use of Participatory Object-Oriented Bayesian Networks and Agro-Economic Models for Groundwater Management in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1509-1524, March.
    5. Chang, Ni-Bin & Lu, Jia-Wei & Chui, Ting Fong May & Hartshorn, Nicholas, 2018. "Global policy analysis of low impact development for stormwater management in urban regions," Land Use Policy, Elsevier, vol. 70(C), pages 368-383.
    6. Kenanga Sari & Tri Retnaningsih Soeprobowati & Jumari Jumari & Riche Hariyati & Jerry R. Miller, 2021. "Trace Metals and Diatom Stratigraphy along the Sill between Lakes Telaga Warna and Telaga Pengilon, Dieng, Central Java, Indonesia," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    7. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    8. Yasser M. Zakarya & Mohamed M. Metwaly & Mohamed A. E. AbdelRahman & Mohamed R. Metwalli & Georgios Koubouris, 2021. "Optimized Land Use through Integrated Land Suitability and GIS Approach in West El-Minia Governorate, Upper Egypt," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    9. Edoardo Bertone & Sara Peters Hughes, 2023. "Probabilistic Prediction of Satellite-Derived Water Quality for a Drinking Water Reservoir," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    10. Prashant K. Srivastava & Prem C. Pandey & George P. Petropoulos & Nektarios N. Kourgialas & Varsha Pandey & Ujjwal Singh, 2019. "GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques," Resources, MDPI, vol. 8(2), pages 1-17, April.
    11. Jesús Barrena-González & Joaquín Francisco Lavado Contador & Manuel Pulido Fernández, 2022. "Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    12. Yanto & Arwan Apriyono & Purwanto Bekti Santoso & Sumiyanto, 2022. "Landslide susceptible areas identification using IDW and Ordinary Kriging interpolation techniques from hard soil depth at middle western Central Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1405-1416, January.
    13. B. Rousta & S. Araghinejad, 2015. "Development of a Multi Criteria Decision Making Tool for a Water Resources Decision Support System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5713-5727, December.
    14. Darren Norris & Marie-Josée Fortin & William E Magnusson, 2014. "Towards Monitoring Biodiversity in Amazonian Forests: How Regular Samples Capture Meso-Scale Altitudinal Variation in 25 km2 Plots," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-9, August.
    15. Choudhury, Malini Roy & Mellor, Vincent & Das, Sumanta & Christopher, Jack & Apan, Armando & Menzies, Neal W. & Chapman, Scott & Dang, Yash P., 2021. "Improving estimation of in-season crop water use and health of wheat genotypes on sodic soils using spatial interpolation techniques and multi-component metrics," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Pushpa Tuppad & Narayanan Kannan & Raghavan Srinivasan & Colleen Rossi & Jeffrey Arnold, 2010. "Simulation of Agricultural Management Alternatives for Watershed Protection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3115-3144, September.
    17. Wen Liu & Long Ma & Jilili Abuduwaili & Gulnura Issanova & Galymzhan Saparov, 2021. "Sediment Organic Carbon Sequestration of Balkhash Lake in Central Asia," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    18. Zhilong Zhao & Zengzeng Hu & Jun Zhou & Ruliang Kan & Wangjun Li, 2023. "Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years," Land, MDPI, vol. 12(2), pages 1-16, January.
    19. Shahin Zandmoghaddam & Ali Nazemi & Elmira Hassanzadeh & Shadi Hatami, 2019. "Representing Local Dynamics of Water Resource Systems through a Data-Driven Emulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3579-3594, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8620-:d:614770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.