IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11302-d1198404.html
   My bibliography  Save this article

Probabilistic Prediction of Satellite-Derived Water Quality for a Drinking Water Reservoir

Author

Listed:
  • Edoardo Bertone

    (School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia
    Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
    Cities Research Institute, Griffith University, Edmund Rice Drive, Southport, QLD 4222, Australia)

  • Sara Peters Hughes

    (Seqwater, 117 Brisbane Street, Ipswich, QLD 4305, Australia)

Abstract

A Bayesian network-based modelling framework was proposed to predict the probability of exceeding critical thresholds for chlorophyll-a and turbidity in an Australian subtropical drinking water reservoir, based on Sentinel-2 data and prior knowledge. The model was trained with quasi-synchronous historical in situ and satellite data for 2018–2023 and achieved satisfactory accuracy (Brier score < 0.27 for all models) despite limited poor water quality events in the final dataset. The graphical output of the model (posterior probability maps of high turbidity or chlorophyll-a) provides an effective means for the user to evaluate both the prediction, and the uncertainty behind the predictions in a single map. This avoids loss of trust in the model and can trigger spatially targeted data collection in order to reduce uncertainty. Future work will focus on refining the modelling methodology and its automation, as well as including other data such as in situ high-frequency sensors.

Suggested Citation

  • Edoardo Bertone & Sara Peters Hughes, 2023. "Probabilistic Prediction of Satellite-Derived Water Quality for a Drinking Water Reservoir," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11302-:d:1198404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    2. Humberto Silva-Hidalgo & Ignacio Martín-Domínguez & María Alarcón-Herrera & Alfredo Granados-Olivas, 2009. "Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 721-730, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    2. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    3. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    4. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    5. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    6. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    7. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    8. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Dayong Li & Zengchuan Dong & Liyao Shi & Jintao Liu & Zhenye Zhu & Wei Xu, 2019. "Risk Probability Assessment of Sudden Water Pollution in the Plain River Network Based on Random Discharge from Multiple Risk Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4051-4065, September.
    10. Tiller, Rachel Gjelsvik & Hansen, Lillian & Richards, Russell & Strand, Hillevi, 2015. "Work segmentation in the Norwegian salmon industry: The application of segmented labor market theory to work migrants on the island community of Frøya, Norway," Marine Policy, Elsevier, vol. 51(C), pages 563-572.
    11. Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
    12. Jinjia Zhang & Yiping Zeng & Genserik Reniers & Jie Liu, 2022. "Analysis of the Interaction Mechanism of the Risk Factors of Gas Explosions in Chinese Underground Coal Mines," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    13. Nguyen, Minh-Hoang, 2023. "Investigating urban residents' involvement in biodiversity conservation in protected areas: Empirical evidence from Vietnam," Thesis Commons z2hjv, Center for Open Science.
    14. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    15. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    17. Mastrangelo, Matias Enrique & Sun, Zhanli & Seghezzo, Lucas & Müller, Daniel, 2019. "Survey-based modeling of land-use intensity in agricultural frontiers of the Argentine dry Chaco," Land Use Policy, Elsevier, vol. 88(C).
    18. Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    19. Gema Carmona & Consuelo Varela-Ortega & John Bromley, 2011. "The Use of Participatory Object-Oriented Bayesian Networks and Agro-Economic Models for Groundwater Management in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1509-1524, March.
    20. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11302-:d:1198404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.