IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i1p181-196.html
   My bibliography  Save this article

Groundwater Spatial Dynamics and Endogenous Well Location

Author

Listed:
  • Pamela Katic

Abstract

Groundwater economic models have refined optimal extraction rules while lagging behind in the study of optimal spatial policies. This paper develops a theoretical model to estimate welfare gains from optimal groundwater management when the choice variable set is expanded to include well location decisions as well as optimal groundwater extraction paths. Our theoretical results show that if there is spatial heterogeneity in groundwater, the welfare gains from optimal location of wells are substantial even if extraction rates are unregulated. Furthermore, second-best economically defined spacing regulations may possibly have better efficiency results (and lower implementation costs) than first-best uniform taxes or quotas. An application of the model to a real-world aquifer shows the importance of including well location decisions in spatially differentiated groundwater models and the need for (1) robust estimates of the gains from optimal management and; (2) spatially explicit regulations. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:181-196
    DOI: 10.1007/s11269-014-0834-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0834-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0834-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshiaki Kaoru & V. Kerry Smith & Jin Long Liu, 1995. "Using Random Utility Models to Estimate the Recreational Value of Estuarine Resources," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(1), pages 141-151.
    2. A. Brett Hauber & George R. Parsons, 2000. "The Effect of Nesting Structure Specification on Welfare Estimation in a Random Utility Model of Recreation Demand: An Application to the Demand for Recreational Fishing," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 501-514.
    3. Nicholas Brozović & David Sunding & David Zilberman, 2006. "Optimal Management of Groundwater over Space and Time," Natural Resource Management and Policy, in: Renan-Ulrich Goetz & Dolors Berga (ed.), Frontiers in Water Resource Economics, chapter 0, pages 109-135, Springer.
    4. Chakravorty Ujjayant & Hochman Eithan & Zilberman David, 1995. "A Spatial Model of Optimal Water Conveyance," Journal of Environmental Economics and Management, Elsevier, vol. 29(1), pages 25-41, July.
    5. Jaco Nel & Yongxin Xu & Okke Batelaan & Luc Brendonck, 2009. "Benefit and Implementation of Groundwater Protection Zoning in South Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2895-2911, November.
    6. Tsur, Yacov & Graham-Tomasi, Theodore, 1991. "The buffer value of groundwater with stochastic surface water supplies," Journal of Environmental Economics and Management, Elsevier, vol. 21(3), pages 201-224, November.
    7. Santiago Rubio & Begoña Casino, 2003. "Strategic Behavior and Efficiency in the Common Property Extraction of Groundwater," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 73-87, September.
    8. Renan-Ulrich Goetz & Dolors Berga (ed.), 2006. "Frontiers in Water Resource Economics," Natural Resource Management and Policy, Springer, number 978-0-387-30056-6, March.
    9. M. Qureshi & S. Qureshi & K. Bajracharya & M. Kirby, 2008. "Integrated Biophysical and Economic ModellingFramework to Assess Impacts of Alternative Groundwater Management Options," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(3), pages 321-341, March.
    10. Keith C. Knapp & Kurt A. Schwabe, 2008. "Spatial Dynamics of Water and Nitrogen Management in Irrigated Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(2), pages 524-539.
    11. Knapp, Keith C. & Schwabe, Kurt A., 2008. "AJAE Appendix: Spatial Dynamics of Water and Nitrogen Management in Irrigated Agriculture," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 90(2), pages 1-17.
    12. Smith, Martin D. & Sanchirico, James N. & Wilen, James E., 2009. "The economics of spatial-dynamic processes: Applications to renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 104-121, January.
    13. David Scrogin & Kevin Boyle & George Parsons & Andrew J. Plantinga, 2004. "Effects of Regulations on Expected Catch, Expected Harvest, and Site Choice of Recreational Anglers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 963-974.
    14. Gisser, Micha, 1983. "Groundwater: Focusing on the Real Issue," Journal of Political Economy, University of Chicago Press, vol. 91(6), pages 1001-1027, December.
    15. Haab, Timothy C. & Hicks, Robert L., 1997. "Accounting for Choice Set Endogeneity in Random Utility Models of Recreation Demand," Journal of Environmental Economics and Management, Elsevier, vol. 34(2), pages 127-147, October.
    16. World Bank, 2010. "Deep Wells and Prudence : Towards Pragmatic Action for Addressing Groundwater Overexploitation in India," World Bank Publications - Reports 2835, The World Bank Group.
    17. Nancy E. Bockstael, 1996. "Modeling Economics and Ecology: The Importance of a Spatial Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1168-1180.
    18. I. Heinz & M. Pulido-Velazquez & J. Lund & J. Andreu, 2007. "Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1103-1125, July.
    19. Saak, Alexander E. & Peterson, Jeffrey M., 2007. "Groundwater use under incomplete information," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 214-228, September.
    20. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    21. Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2010. "On the spatial nature of the groundwater pumping externality," Resource and Energy Economics, Elsevier, vol. 32(2), pages 154-164, April.
    22. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.
    23. Kolstad Charles D., 1994. "Hotelling Rents in Hotelling Space: Product Differentiation in Exhaustible Resource Markets," Journal of Environmental Economics and Management, Elsevier, vol. 26(2), pages 163-180, March.
    24. Smith, Martin D., 2005. "State dependence and heterogeneity in fishing location choice," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 319-340, September.
    25. Gerard Gaudet & Michel Moreaux & Stephen W. Salant, 2001. "Intertemporal Depletion of Resource Sites by Spatially Distributed Users," American Economic Review, American Economic Association, vol. 91(4), pages 1149-1159, September.
    26. Goetz, Renan U. & Zilberman, David, 2000. "The dynamics of spatial pollution: The case of phosphorus runoff from agricultural land," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 143-163, January.
    27. Parker, Dawn Cassandra, 2007. "Revealing "space" in spatial externalities: Edge-effect externalities and spatial incentives," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 84-99, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    2. Reinelt, Peter, 2020. "Spatial-dynamic seawater intrusion and pumping cost externalities in a confined aquifer," Resource and Energy Economics, Elsevier, vol. 59(C).
    3. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    4. James Roumasset & Christopher Wada, 2012. "The Economics of Groundwater," Working Papers 201211, University of Hawaii at Manoa, Department of Economics.
    5. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    6. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    7. Rauscher, Michael & Barbier, Edward B., 2010. "Biodiversity and geography," Resource and Energy Economics, Elsevier, vol. 32(2), pages 241-260, April.
    8. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    9. Godwin Kwabla Ekpe & Anna A. Klis, 2023. "Spillover Effects in Irrigated Agriculture from the Groundwater Commons," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 469-507, November.
    10. Stafford, Tess M., 2018. "Accounting for outside options in discrete choice models: An application to commercial fishing effort," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 159-179.
    11. Hubert Stahn & Agnès Tomini, 2015. "Rainwater Harvesting under Endogenous Capacity of Storage : a Solution to Aquifer Preservation," Annals of Economics and Statistics, GENES, issue 119-120, pages 209-234.
    12. repec:hae:wpaper:2012-5 is not listed on IDEAS
    13. Ayres, Andrew B. & Edwards, Eric C. & Libecap, Gary D., 2018. "How transaction costs obstruct collective action: The case of California's groundwater," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 46-65.
    14. Chandra Kiran B. Krishnamurthy, 2017. "Optimal Management of Groundwater Under Uncertainty: A Unified Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 351-377, June.
    15. Xueqin Zhu & Ekko Ierland, 2012. "Economic Modelling for Water Quantity and Quality Management: A Welfare Program Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2491-2511, July.
    16. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    17. Quintana Ashwell, Nicolas E. & Peterson, Jeffrey M. & Hendricks, Nathan P., 2018. "Optimal groundwater management under climate change and technical progress," Resource and Energy Economics, Elsevier, vol. 51(C), pages 67-83.
    18. Peterson, Jeffrey M. & Saak, Alexander E., 2013. "Spatial externalities in aquifers with varying thickness: Theory and numerical results for the Ogallala aquifer," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150553, Agricultural and Applied Economics Association.
    19. William Brock & Anastasios Xepapadeas, 2020. "Spatial Environmental and Resource Economics," DEOS Working Papers 2002, Athens University of Economics and Business.
    20. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    21. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:181-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.