IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i4p423-441.html
   My bibliography  Save this article

Event-based Sediment Yield Modeling using Artificial Neural Network

Author

Listed:
  • Raveendra Rai
  • B. Mathur

Abstract

In the present study, a back propagation feedforward artificial neural network (ANN) model was developed for the computation of event-based temporal variation of sediment yield from the watersheds. The training of the network was performed by using the gradient descent algorithm with automated Bayesian regularization, and different ANN structures were tried with different input patterns. The model was developed from the storm event data (i.e. rainfall intensity, runoff and sediment flow) registered over the two small watersheds and the responses were computed in terms of runoff hydrographs and sedimentographs. Selection of input variables was made by using the autocorrelation and cross-correlation analysis of the data as well as by using the concept of travel time of the watershed. Finally, the best fit ANN model with suitable combination of input variables was selected using the statistical criteria such as root mean square error (RMSE), correlation coefficient (CC) and Nash efficiency (CE), and used for the computation of runoff hydrographs and sedimentographs. Further, the relative performance of the ANN model was also evaluated by comparing the results obtained from the linear transfer function model. The error criteria viz. Nash efficiency (CE), error in peak sediment flow rate (EPS), error in time to peak (ETP) and error in total sediment yield (ESY) for the storm events were estimated for the performance evaluation of the models. Based on these criteria, ANN based model results better agreement than the linear transfer function model for the computation of runoff hydrographs and sedimentographs for both the watersheds. Copyright Springer Science+Business Media, Inc. 2008

Suggested Citation

  • Raveendra Rai & B. Mathur, 2008. "Event-based Sediment Yield Modeling using Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 423-441, April.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:4:p:423-441
    DOI: 10.1007/s11269-007-9170-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-007-9170-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-007-9170-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avinash Agarwal & R. Singh, 2004. "Runoff Modelling Through Back Propagation Artificial Neural Network With Variable Rainfall-Runoff Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 285-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenq-Tzong Shiau & Ting-Ju Chen, 2015. "Quantile Regression-Based Probabilistic Estimation Scheme for Daily and Annual Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2805-2818, June.
    2. Aytac Guven & Özgür Kişi, 2011. "Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 691-704, January.
    3. Mansour Talebizadeh & Saeid Morid & Seyyed Ayyoubzadeh & Mehdi Ghasemzadeh, 2010. "Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1747-1761, July.
    4. Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
    5. Ferhat Gökbulak & Kamil Şengönül & Yusuf Serengil & İbrahim Yurtseven & Süleyman Özhan & Hikmet Cigizoglu & Betül Uygur, 2015. "Comparison of Rainfall-Runoff Relationship Modeling using Different Methods in a Forested Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4229-4239, September.
    6. Yi-min Wang & Jian-xia Chang & Qiang Huang, 2010. "Simulation with RBF Neural Network Model for Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2597-2610, September.
    7. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    2. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
    3. Rajib Bhattacharjya & Sandeep Chaurasia, 2013. "Geomorphology Based Semi-Distributed Approach for Modelling Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 567-579, January.
    4. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    5. Bhabagrahi Sahoo, 2013. "Field Application of the Multilinear Muskingum Discharge Routing Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1193-1205, March.
    6. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    7. Qiang Fu & Long-Bin Lu & Jin-Bai Huang, 2014. "Numerical Analysis of Surface Runoff for the Liudaogou Drainage Basin in the North Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4809-4822, October.
    8. Maryam Ghashghaei & Ali Bagheri & Saeed Morid, 2013. "Rainfall-runoff Modeling in a Watershed Scale Using an Object Oriented Approach Based on the Concepts of System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5119-5141, December.
    9. A. Sohail & K. Watanabe & S. Takeuchi, 2008. "Runoff Analysis for a Small Watershed of Tono Area Japan by Back Propagation Artificial Neural Network with Seasonal Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:4:p:423-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.