IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i2p691-704.html
   My bibliography  Save this article

Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming

Author

Listed:
  • Aytac Guven
  • Özgür Kişi

Abstract

Estimation of suspended sediment yield is subject to uncertainty and bias. Many methods have been developed for estimating sediment yield but they still lack accuracy and robustness. This paper investigates the use of a machine-coded linear genetic programming (LGP) in daily suspended sediment estimation. The accuracy of LGP is compared with those of the Gene-expression programming (GEP), which is another branch of GP, and artificial neural network (ANN) technique. Daily streamflow and suspended sediment data from two stations on the Tongue River in Montana, USA, are used as case studies. Root mean square error (RMSE) and determination coefficient (R 2 ) statistics are used for evaluating the accuracy of the models. Based on the comparison of the results, it is found that the LGP performs better than the GEP and ANN techniques. The GEP was also found to be better than the ANN. For the upstream and downstream stations, it is found that the LGP models with RMSE=175 ton/day, R 2 =0.941 and RMSE=254 ton/day, R 2 =0.959 in test period is superior in estimating daily suspended sediments than the best accurate GEP model with RMSE=231 ton/day, R 2 =0.941 and RMSE=331 ton/day, R 2 =0.934, respectively. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Aytac Guven & Özgür Kişi, 2011. "Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 691-704, January.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:2:p:691-704
    DOI: 10.1007/s11269-010-9721-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9721-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9721-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mansour Talebizadeh & Saeid Morid & Seyyed Ayyoubzadeh & Mehdi Ghasemzadeh, 2010. "Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1747-1761, July.
    2. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    3. Kisi, Özgür, 2008. "Constructing neural network sediment estimation models using a data-driven algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 94-103.
    4. Raveendra Rai & B. Mathur, 2008. "Event-based Sediment Yield Modeling using Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 423-441, April.
    5. Dragan Savic & Godfrey Walters & James Davidson, 1999. "A Genetic Programming Approach to Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(3), pages 219-231, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anas Mahmood Al-Juboori & Aytac Guven, 2016. "Hydropower Plant Site Assessment by Integrated Hydrological Modeling, Gene Expression Programming and Visual Basic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2517-2530, May.
    2. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1879-1897, May.
    3. Seydou Traore & Aytac Guven, 2012. "Regional-Specific Numerical Models of Evapotranspiration Using Gene-Expression Programming Interface in Sahel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4367-4380, December.
    4. Asli Ulke & Gokmen Tayfur & Sevinc Ozkul, 2017. "Investigating a Suitable Empirical Model and Performing Regional Analysis for the Suspended Sediment Load Prediction in Major Rivers of the Aegean Region, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 739-764, February.
    5. Jenq-Tzong Shiau & Ting-Ju Chen, 2015. "Quantile Regression-Based Probabilistic Estimation Scheme for Daily and Annual Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2805-2818, June.
    6. E. Fallah-Mehdipour & O. Bozorg Haddad & M. Mariño, 2012. "Real-Time Operation of Reservoir System by Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4091-4103, November.
    7. Y. Saeedrashed & A. Guven, 2013. "Estimation of Geomorphological Parameters of Lower Zab River-Basin by Using GIS-Based Remotely Sensed Image," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 209-219, January.
    8. Neslihan Seckin & Aytac Guven, 2012. "Estimation of Peak Flood Discharges at Ungauged Sites Across Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2569-2581, July.
    9. Vasileios Kitsikoudis & Epaminondas Sidiropoulos & Vlassios Hrissanthou, 2014. "Machine Learning Utilization for Bed Load Transport in Gravel-Bed Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3727-3743, September.
    10. Tabasum Rasool & A. Q. Dar & M. A. Wani, 2021. "Development of a Predictive Equation for Modelling the Infiltration Process Using Gene Expression Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1871-1888, April.
    11. Hazi Azamathulla & Aminuddin Ghani & Cheng Leow & Chun Chang & Nor Zakaria, 2011. "Gene-Expression Programming for the Development of a Stage-Discharge Curve of the Pahang River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2901-2916, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Ferhat Gökbulak & Kamil Şengönül & Yusuf Serengil & İbrahim Yurtseven & Süleyman Özhan & Hikmet Cigizoglu & Betül Uygur, 2015. "Comparison of Rainfall-Runoff Relationship Modeling using Different Methods in a Forested Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4229-4239, September.
    3. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1879-1897, May.
    4. Alireza B. Dariane & M. M. Javadianzadeh & L. Douglas James, 2016. "Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1923-1937, April.
    5. Habib Akbari-Alashti & Omid Bozorg Haddad & Miguel Mariño, 2015. "Evaluation of a Developed Discrete Time-Series Method in Flow Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3211-3225, July.
    6. Yi-min Wang & Jian-xia Chang & Qiang Huang, 2010. "Simulation with RBF Neural Network Model for Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2597-2610, September.
    7. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    8. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    9. Rana Muhammad Adnan & Andrea Petroselli & Salim Heddam & Celso Augusto Guimarães Santos & Ozgur Kisi, 2021. "Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2987-3011, February.
    10. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    11. Shirin Karimi & Bahman Jabbarian Amiri & Arash Malekian, 2019. "Similarity Metrics-Based Uncertainty Analysis of River Water Quality Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1927-1945, April.
    12. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    13. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    14. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    15. Madan Jha & Gaurav Nanda & Manoj Samuel, 2004. "Determining Hydraulic Characteristics of Production Wells using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(4), pages 353-377, August.
    16. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    17. Mansour Talebizadeh & Saeid Morid & Seyyed Ayyoubzadeh & Mehdi Ghasemzadeh, 2010. "Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1747-1761, July.
    18. Xiangwei Wang & Yizhe Yang & Jianglong Lv & Hailong He, 2023. "Past, present and future of the applications of machine learning in soil science and hydrology," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 67-80.
    19. Ali Arefinia & Omid Bozorg-Haddad & Khaled Ahmadaali & Javad Bazrafshan & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Estimation of geographical variations in virtual water content and crop yield under climate change: comparison of three data mining approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8378-8396, June.
    20. Vincent Wolfs & Patrick Willems, 2017. "Modular Conceptual Modelling Approach and Software for Sewer Hydraulic Computations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 283-298, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:2:p:691-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.