IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i12p4229-4239.html
   My bibliography  Save this article

Comparison of Rainfall-Runoff Relationship Modeling using Different Methods in a Forested Watershed

Author

Listed:
  • Ferhat Gökbulak
  • Kamil Şengönül
  • Yusuf Serengil
  • İbrahim Yurtseven
  • Süleyman Özhan
  • Hikmet Cigizoglu
  • Betül Uygur

Abstract

The daily rainfall-runoff relationship in an experimental watershed was modeled using a statistical method and an artificial neural network method. The estimations were examined and a performance evaluation was done. It was seen that the ANN method, FFBP (Feed Forward Back Propagation), provided closer flow estimations reproducing the shape of the observed hydrograph more realistic. The superiority of FFBP was reflected in the performance evaluation criteria. The extreme flows, i.e., high and low flows, were relatively better approximated by FFBP indicating its promise as a useful tool for hydrologic studies such as flood modeling. The Rational Method was also used, as a conventional tool, to predict the maximum discharge for selected return periods. It was found to be realistic for the forested watershed under consideration when the C coefficient was taken as 0.20 for the 10-year period. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Ferhat Gökbulak & Kamil Şengönül & Yusuf Serengil & İbrahim Yurtseven & Süleyman Özhan & Hikmet Cigizoglu & Betül Uygur, 2015. "Comparison of Rainfall-Runoff Relationship Modeling using Different Methods in a Forested Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4229-4239, September.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4229-4239
    DOI: 10.1007/s11269-015-1056-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1056-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1056-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Sohail & K. Watanabe & S. Takeuchi, 2008. "Runoff Analysis for a Small Watershed of Tono Area Japan by Back Propagation Artificial Neural Network with Seasonal Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 1-22, January.
    2. Raveendra Rai & B. Mathur, 2008. "Event-based Sediment Yield Modeling using Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 423-441, April.
    3. Neslihan Seckin & Murat Cobaner & Recep Yurtal & Tefaruk Haktanir, 2013. "Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2103-2124, May.
    4. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    5. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Goyal & C. Ojha, 2011. "Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2177-2195, July.
    2. Aytac Guven & Özgür Kişi, 2011. "Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 691-704, January.
    3. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    4. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    5. Helge Bormann & Oliver Caspari, 2015. "On the Value of Hydrological Models Developed in the Context of Undergraduate Education for Discharge Prediction and Reservoir Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3569-3584, August.
    6. Peng Li & Zhen He & Jianwu Cai & Jing Zhang & Marye Belete & Jinsong Deng & Shizong Wang, 2022. "Identify the Impacts of the Grand Ethiopian Renaissance Dam on Watershed Sediment and Water Yields Dynamics," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    7. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    8. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    9. Yi-min Wang & Jian-xia Chang & Qiang Huang, 2010. "Simulation with RBF Neural Network Model for Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2597-2610, September.
    10. Marye Belete & Jinsong Deng & Mengmeng Zhou & Ke Wang & Shixue You & Yang Hong & Melanie Weston, 2018. "A New Approach to Modeling Water Balance in Nile River Basin, Africa," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    11. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    12. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Hu, Bo & Gong, Wei, 2016. "Modeling and comparison of hourly photosynthetically active radiation in different ecosystems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 436-453.
    13. Rana Muhammad Adnan & Andrea Petroselli & Salim Heddam & Celso Augusto Guimarães Santos & Ozgur Kisi, 2021. "Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2987-3011, February.
    14. Seyed Akrami & Vahid Nourani & S. Hakim, 2014. "Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2999-3018, August.
    15. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    16. B. François & B. Hingray & J. Creutin & F. Hendrickx, 2015. "Estimating Water System Performance Under Climate Change: Influence of the Management Strategy Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4903-4918, October.
    17. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.
    18. Rick Hogeboom & Pieter Oel & Maarten Krol & Martijn Booij, 2015. "Modelling the Influence of Groundwater Abstractions on the Water Level of Lake Naivasha, Kenya Under Data-Scarce Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4447-4463, September.
    19. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    20. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4229-4239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.