IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i1p67-82.html
   My bibliography  Save this article

Deterministic Insight into ANN Model Performance for Storm Runoff Simulation

Author

Listed:
  • Kwan Lee
  • Wei-Chiao Hung
  • Chung-Chieh Meng

Abstract

The artificial neural network (ANN) theory has been widely applied to practical applications in hydrology. Since watershed rainfall–runoff processes are nonlinear and exhibit spatial and temporal variability, the ANN model, which considers watershed nonlinear characteristics, can usually but not always obtain satisfactory simulation results. The training of an ANN network is based completely on the reliability of the available hydrologic records. The objective of this study was to provide deterministic insight into the limitations of storm runoff simulation when using ANN. Hydrologic records of 42 storm events from two watersheds in Taiwan were adopted for analysis. A deterministic runoff model was used to classify the hydrologic records into “usual” and “unusual” storm events. The analytical results show that the ANN model could provide good simulation results for “usual” storm events; however, its performance was poor when it was applied to “unusual” storm events because no consistent hydrologic characteristics could be extracted from the storm event records using ANN. The success of the ANN model in usual storm discharge simulations may be mainly due to the input vectors including the previous observed discharge. Moreover, the number of past periods of rainfall that were set as the input vectors of the ANN model was found to be highly correlated with the watershed time of concentration. It can be used to efficiently determine the ANN network structure instead of using iterative network training. Copyright Springer Science+Business Media, Inc. 2008

Suggested Citation

  • Kwan Lee & Wei-Chiao Hung & Chung-Chieh Meng, 2008. "Deterministic Insight into ANN Model Performance for Storm Runoff Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 67-82, January.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:1:p:67-82
    DOI: 10.1007/s11269-006-9144-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9144-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9144-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004. "River Flow Forecasting using Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
    2. Misgana Muleta & John Nicklow, 2004. "Joint Application of Artificial Neural Networks and Evolutionary Algorithms to Watershed Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 459-482, October.
    3. S. Rao & B. Thandaveswara & S. Murty Bhallamudi & V. Srinivasulu, 2003. "Optimal Groundwater Management in Deltaic Regions using Simulated Annealing and Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(6), pages 409-428, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    2. Nariman Valizadeh & Majid Mirzaei & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Nuruol Syuhadaa Mohd & Aini Hussain & Ahmed El-Shafie, 2017. "Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1377-1392, April.
    3. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    4. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    5. Mahdi Valikhan Anaraki & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2021. "Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 199-223, January.
    6. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    7. Vahid Gholami & Mohammad Reza Khaleghi, 2021. "A simulation of the rainfall-runoff process using artificial neural network and HEC-HMS model in forest lands," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(4), pages 165-174.
    8. Mojtaba Kadkhodazadeh & Saeed Farzin, 2021. "A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3939-3968, September.
    9. Manish Goyal & C. Ojha, 2011. "Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2177-2195, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    2. Hone-Jay Chu & Liang-Cheng Chang, 2009. "Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 647-660, March.
    3. Karen Goff & Randall Gentry, 2006. "The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 829-860, December.
    4. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    5. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    6. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    7. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    8. Bhavana G. Thummar & Vijendra Kumar & Sanjaykumar M. Yadav & Prabhakar Gundlapalli, 2024. "Optimum Cropping Pattern in the Command Area of Nyari-2 Reservoir Using Teaching Learning-Based Optimization Algorithm," SN Operations Research Forum, Springer, vol. 5(2), pages 1-18, June.
    9. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    10. S. Rao & S. Bhallamudi & B. Thandaveswara & V. Sreenivasulu, 2005. "Planning Groundwater Development in Coastal Deltas with Paleo Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 625-639, October.
    11. Said Jalala & Azzedine Hani & Isam Shahrour, 2011. "Characterizing the Socio-Economic Driving Forces of Groundwater Abstraction with Artificial Neural Networks and Multivariate Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2147-2175, July.
    12. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    13. Júlio Ferreira da Silva & Naim Haie, 2007. "Optimal Locations of Groundwater Extractions in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1299-1311, August.
    14. Shivshanker Patel & Parthasarathy Ramachandran, 2015. "A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 589-602, January.
    15. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    16. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    17. Tingqi Wang & Yuting Guo & Mazina Svetlana Evgenievna & Zhenjiang Wu, 2024. "Application of a Multi-Model Fusion Forecasting Approach in Runoff Prediction: A Case Study of the Yangtze River Source Region," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
    18. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    19. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    20. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:1:p:67-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.