IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v166y2015i1d10.1007_s10957-015-0708-x.html
   My bibliography  Save this article

Primal-Dual Active-Set Methods for Large-Scale Optimization

Author

Listed:
  • Daniel P. Robinson

    (Johns Hopkins University)

Abstract

In this paper, we introduce two primal-dual active-set methods for solving large-scale constrained optimization problems. The first method minimizes a sequence of primal-dual augmented Lagrangian functions subject to bounds on the primal variables and artificial bounds on the dual variables. The basic structure is similar to the well-known optimization package Lancelot (Conn, et al. in SIAM J Numer Anal 28:545–572, 1991), which uses the traditional primal augmented Lagrangian function. Like Lancelot, our algorithm may use gradient projection-based methods enhanced by subspace acceleration techniques to solve each subproblem and therefore may be implemented matrix-free. The artificial bounds on the dual variables are a unique feature of our method and serve as a form of dual regularization. Our second algorithm is a two-phase method. The first phase computes iterates using our primal-dual augmented Lagrangian algorithm, which benefits from using cheap gradient projections and matrix-free linear CG calculations. The final iterate produced during this phase is then used as input for phase two, which is a stabilized sequential quadratic programming method (Gill and Robinson in SIAM J Opt 1–45, 2013). Obtaining superlinear local convergence under weak assumptions is an important benefit of the transition to a stabilized sequential quadratic programming algorithm. Interestingly, the bound-constrained subproblem used in phase one is equivalent to the stabilized subproblem used in phase two under certain assumptions. This fact makes our choice of algorithms a natural one.

Suggested Citation

  • Daniel P. Robinson, 2015. "Primal-Dual Active-Set Methods for Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 137-171, July.
  • Handle: RePEc:spr:joptap:v:166:y:2015:i:1:d:10.1007_s10957-015-0708-x
    DOI: 10.1007/s10957-015-0708-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0708-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0708-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. V. Rao & S. J. Wright & J. B. Rawlings, 1998. "Application of Interior-Point Methods to Model Predictive Control," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 723-757, December.
    2. Philip Gill & Daniel Robinson, 2012. "A primal-dual augmented Lagrangian," Computational Optimization and Applications, Springer, vol. 51(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Izmailov & M. Solodov & E. Uskov, 2015. "Combining stabilized SQP with the augmented Lagrangian algorithm," Computational Optimization and Applications, Springer, vol. 62(2), pages 405-429, November.
    2. A. F. Izmailov & E. I. Uskov, 2017. "Subspace-stabilized sequential quadratic programming," Computational Optimization and Applications, Springer, vol. 67(1), pages 129-154, May.
    3. Mu, Yunfei & Xu, Yanze & Zhang, Jiarui & Wu, Zeqing & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2023. "A data-driven rolling optimization control approach for building energy systems that integrate virtual energy storage systems," Applied Energy, Elsevier, vol. 346(C).
    4. R. Milman & E. J. Davison, 2008. "A Fast MPC Algorithm Using Nonfeasible Active Set Methods," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 591-616, December.
    5. Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.
    6. Paul Armand & Riadh Omheni, 2017. "A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 523-547, May.
    7. Nai-Yuan Chiang & Victor M. Zavala, 2016. "An inertia-free filter line-search algorithm for large-scale nonlinear programming," Computational Optimization and Applications, Springer, vol. 64(2), pages 327-354, June.
    8. A. F. Izmailov & M. V. Solodov & E. I. Uskov, 2016. "Globalizing Stabilized Sequential Quadratic Programming Method by Smooth Primal-Dual Exact Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 148-178, April.
    9. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    10. Daniel Word & Jia Kang & Johan Akesson & Carl Laird, 2014. "Efficient parallel solution of large-scale nonlinear dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 59(3), pages 667-688, December.
    11. Paul Armand & Joël Benoist & Riadh Omheni & Vincent Pateloup, 2014. "Study of a primal-dual algorithm for equality constrained minimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 405-433, December.
    12. Mohsen Davoodi & Hamed Jafari Kaleybar & Morris Brenna & Dario Zaninelli, 2023. "Energy Management Systems for Smart Electric Railway Networks: A Methodological Review," Sustainability, MDPI, vol. 15(16), pages 1-35, August.
    13. A. Izmailov & M. Solodov, 2015. "Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 1-26, April.
    14. Daniel Robinson, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 43-47, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:166:y:2015:i:1:d:10.1007_s10957-015-0708-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.