IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v186y2020i3d10.1007_s10957-020-01721-x.html
   My bibliography  Save this article

Sequential Difference-of-Convex Programming

Author

Listed:
  • Welington Oliveira

    (PSL – Research University)

Abstract

Optimization methods for difference-of-convex programs iteratively solve convex subproblems to define iterates. Although convex, depending on the problem’s structure, these subproblems are very often challenging and require specialized solvers. This work investigates a new methodology that defines iterates as approximate critical points of significantly easier difference-of-convex subproblems approximating the original one. Since there is considerable freedom to choose such more accessible subproblems, several algorithms can be designed from the given approach. In some cases, the resulting algorithm boils down to a straightforward process with iterates given in an analytic form. In other situations, decomposable subproblems can be chosen, opening the way for parallel computing even when the original program is not decomposable. Depending on the problem’s assumptions, a possible variant of the given approach is the Josephy–Newton method applied to the system of (necessary) optimality conditions of the original difference-of-convex program. In such a setting, local convergence with superlinear and even quadratic rates can be achieved under certain conditions.

Suggested Citation

  • Welington Oliveira, 2020. "Sequential Difference-of-Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 936-959, September.
  • Handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01721-x
    DOI: 10.1007/s10957-020-01721-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01721-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01721-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoai Le Thi & Hoai Le & Tao Pham Dinh & Ngai Van Huynh, 2013. "Binary classification via spherical separator by DC programming and DCA," Journal of Global Optimization, Springer, vol. 56(4), pages 1393-1407, August.
    2. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    3. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    4. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    5. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    6. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    7. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    8. Jong-Shi Pang & Meisam Razaviyayn & Alberth Alvarado, 2017. "Computing B-Stationary Points of Nonsmooth DC Programs," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 95-118, January.
    9. Wim Ackooij & Welington Oliveira, 2019. "Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 49-80, July.
    10. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    11. Hoai Le Thi & Hoai Le & Van Nguyen & Tao Pham Dinh, 2008. "A DC programming approach for feature selection in support vector machines learning," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 2(3), pages 259-278, December.
    12. Outi Montonen & Kaisa Joki, 2018. "Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints," Journal of Global Optimization, Springer, vol. 72(3), pages 403-429, November.
    13. Hoang Tuy, 2016. "Convex Analysis and Global Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-31484-6, December.
    14. Bagirov, Adil M. & Yearwood, John, 2006. "A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems," European Journal of Operational Research, Elsevier, vol. 170(2), pages 578-596, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Pham Dinh & Van Ngai Huynh & Hoai An Le Thi & Vinh Thanh Ho, 2022. "Alternating DC algorithm for partial DC programming problems," Journal of Global Optimization, Springer, vol. 82(4), pages 897-928, April.
    2. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    2. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    3. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    4. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    5. Pietro D’Alessandro & Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2024. "The Descent–Ascent Algorithm for DC Programming," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 657-671, March.
    6. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    7. Hoai An Le Thi & Vinh Thanh Ho & Tao Pham Dinh, 2019. "A unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learning," Journal of Global Optimization, Springer, vol. 73(2), pages 279-310, February.
    8. Wim Ackooij & Welington Oliveira, 2019. "Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 49-80, July.
    9. M. V. Dolgopolik, 2022. "DC Semidefinite programming and cone constrained DC optimization I: theory," Computational Optimization and Applications, Springer, vol. 82(3), pages 649-671, July.
    10. M. V. Dolgopolik, 2023. "DC semidefinite programming and cone constrained DC optimization II: local search methods," Computational Optimization and Applications, Springer, vol. 85(3), pages 993-1031, July.
    11. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2023. "Sparse optimization via vector k-norm and DC programming with an application to feature selection for support vector machines," Computational Optimization and Applications, Springer, vol. 86(2), pages 745-766, November.
    12. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    13. Le Thi, H.A. & Pham Dinh, T. & Le, H.M. & Vo, X.T., 2015. "DC approximation approaches for sparse optimization," European Journal of Operational Research, Elsevier, vol. 244(1), pages 26-46.
    14. Tao Pham Dinh & Van Ngai Huynh & Hoai An Le Thi & Vinh Thanh Ho, 2022. "Alternating DC algorithm for partial DC programming problems," Journal of Global Optimization, Springer, vol. 82(4), pages 897-928, April.
    15. Outi Montonen & Kaisa Joki, 2018. "Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints," Journal of Global Optimization, Springer, vol. 72(3), pages 403-429, November.
    16. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    17. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    18. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
    19. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    20. Jun Sun & Wentao Qu, 2022. "DCA for Sparse Quadratic Kernel-Free Least Squares Semi-Supervised Support Vector Machine," Mathematics, MDPI, vol. 10(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:3:d:10.1007_s10957-020-01721-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.