IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i2p269-d725989.html
   My bibliography  Save this article

Retrial BMAP / PH / N Queueing System with a Threshold-Dependent Inter-Retrial Time Distribution

Author

Listed:
  • Valentina I. Klimenok

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus
    These authors contributed equally to this work.)

  • Alexander N. Dudin

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus
    These authors contributed equally to this work.)

  • Vladimir M. Vishnevsky

    (V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Science, 65 Profsoyuznaya Street, 117997 Moscow, Russia
    These authors contributed equally to this work.)

  • Olga V. Semenova

    (V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Science, 65 Profsoyuznaya Street, 117997 Moscow, Russia
    These authors contributed equally to this work.)

Abstract

In this paper, we study a multi-server queueing system with retrials and an infinite orbit. The arrival of primary customers is described by a batch Markovian arrival process ( B M A P ), and the service times have a phase-type ( P H ) distribution. Previously, in the literature, such a system was mainly considered under the strict assumption that the intervals between the repeated attempts from the orbit have an exponential distribution. Only a few publications dealt with retrial queueing systems with non-exponential inter-retrial times. These publications assumed either the rate of retrials is constant regardless of the number of customers in the orbit or this rate is constant when the number of orbital customers exceeds a certain threshold. Such assumptions essentially simplify the mathematical analysis of the system, but do not reflect the nature of the majority of real-life retrial processes. The main feature of the model under study is that we considered the classical retrial strategy under which the retrial rate is proportional to the number of orbital customers. However, in this case, the assumption of the non-exponential distribution of inter-retrial times leads to insurmountable computational difficulties. To overcome these difficulties, we supposed that inter-retrial times have a phase-type distribution if the number of customers in the orbit is less than or equal to some non-negative integer (threshold) and have an exponential distribution in the contrary case. By appropriately choosing the threshold, one can obtain a sufficiently accurate approximation of the system with a P H distribution of the inter-retrial times. Thus, the model under study takes into account the realistic nature of the retrial process and, at the same time, does not resort to restrictions such as a constant retrial rate or to rough truncation methods often applied to the analysis of retrial queueing systems with an infinite orbit. We describe the behavior of the system by a multi-dimensional Markov chain, derive the stability condition, and calculate the steady-state distribution and the main performance indicators of the system. We made sure numerically that there was a reasonable value of the threshold under which our model can be served as a good approximation of the B M A P / P H / N queueing system with the P H distribution of inter-retrial times. We also numerically compared the system under consideration with the corresponding queueing system having exponentially distributed inter-retrial times and saw that the latter is a poor approximation of the system with the P H distribution of inter-retrial times. We present a number of illustrative numerical examples to analyze the behavior of the system performance indicators depending on the system parameters, the variance of inter-retrial times, and the correlation in the input flow.

Suggested Citation

  • Valentina I. Klimenok & Alexander N. Dudin & Vladimir M. Vishnevsky & Olga V. Semenova, 2022. "Retrial BMAP / PH / N Queueing System with a Threshold-Dependent Inter-Retrial Time Distribution," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:269-:d:725989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/2/269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/2/269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Gómez-Corral, 2006. "A bibliographical guide to the analysis of retrial queues through matrix analytic techniques," Annals of Operations Research, Springer, vol. 141(1), pages 163-191, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Jeganathan & S. Vidhya & R. Hemavathy & N. Anbazhagan & Gyanendra Prasad Joshi & Chanku Kang & Changho Seo, 2022. "Analysis of M / M /1/ N Stochastic Queueing—Inventory System with Discretionary Priority Service and Retrial Facility," Sustainability, MDPI, vol. 14(10), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chesoong Kim & Valentina Klimenok & Alexander Dudin, 2014. "A G/M/1 retrial queue with constant retrial rate," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 509-529, July.
    2. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    3. B. Krishna Kumar & R. Sankar & R. Navaneetha Krishnan & R. Rukmani, 2022. "Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 95-142, March.
    4. Kim, Chesoong & Klimenok, Valentina I. & Orlovsky, Dmitry S., 2008. "The BMAP/PH/N retrial queue with Markovian flow of breakdowns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1057-1072, September.
    5. Efrosinin, Dmitry & Winkler, Anastasia, 2011. "Queueing system with a constant retrial rate, non-reliable server and threshold-based recovery," European Journal of Operational Research, Elsevier, vol. 210(3), pages 594-605, May.
    6. Lyes Ikhlef & Ouiza Lekadir & Djamil Aïssani, 2016. "MRSPN analysis of Semi-Markovian finite source retrial queues," Annals of Operations Research, Springer, vol. 247(1), pages 141-167, December.
    7. C. D’Apice & A. N. Dudin & O. S. Dudina & R. Manzo, 2024. "Analysis of Queueing System with Dynamic Rating-Dependent Arrival Process and Price of Service," Mathematics, MDPI, vol. 12(7), pages 1-20, April.
    8. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    9. Artalejo, J.R. & Economou, A. & Lopez-Herrero, M.J., 2007. "Algorithmic approximations for the busy period distribution of the M/M/c retrial queue," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1687-1702, February.
    10. Che Kim & Vilena Mushko & Alexander Dudin, 2012. "Computation of the steady state distribution for multi-server retrial queues with phase type service process," Annals of Operations Research, Springer, vol. 201(1), pages 307-323, December.
    11. Tuan Phung-Duc & Hiroyuki Masuyama & Shoji Kasahara & Yutaka Takahashi, 2013. "A matrix continued fraction approach to multiserver retrial queues," Annals of Operations Research, Springer, vol. 202(1), pages 161-183, January.
    12. Anastasia Winkler, 2013. "Dynamic scheduling of a single-server two-class queue with constant retrial policy," Annals of Operations Research, Springer, vol. 202(1), pages 197-210, January.
    13. Alexander N. Dudin & Sergey A. Dudin & Valentina I. Klimenok & Olga S. Dudina, 2024. "Stability of Queueing Systems with Impatience, Balking and Non-Persistence of Customers," Mathematics, MDPI, vol. 12(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:269-:d:725989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.